STMicroelectronicsが提供するSTM32F051x4, x6, x8のデータシート

(—1 ! 11e.cugmenfed (9.} u FBGAGA
This is information on a product in full production.
January 2017 DocID022265 Rev 7 1/122
STM32F051x4 STM32F051x6
STM32F051x8
ARM®-based 32-bit MCU, 16 to 64 KB Flash, 11 timers, ADC,
DAC and communication interfaces, 2.0-3.6 V
Datasheet - production data
Features
Core: ARM® 32-bit Cortex®-M0 CPU,
frequency up to 48 MHz
Memories
16 to 64 Kbytes of Flash memory
8 Kbytes of SRAM with HW parity checking
CRC calculation unit
Reset and power management
Digital and I/O supply: VDD = 2.0 V to 3.6 V
Analog supply: VDDA = from VDD to 3.6 V
Power-on/Power down reset (POR/PDR)
Programmable voltage detector (PVD)
Low power modes: Sleep, Stop, Standby
–V
BAT supply for RTC and backup registers
Clock management
4 to 32 MHz crystal oscillator
32 kHz oscillator for RTC with calibration
Internal 8 MHz RC with x6 PLL option
Internal 40 kHz RC oscillator
Up to 55 fast I/Os
All mappable on external interrupt vectors
Up to 36 I/Os with 5 V tolerant capability
5-channel DMA controller
One 12-bit, 1.0 µs ADC (up to 16 channels)
Conversion range: 0 to 3.6 V
Separate analog supply from 2.4 up to 3.6
One 12-bit DAC channel
Two fast low-power analog comparators with
programmable input and output
Up to 18 capacitive sensing channels
supporting touchkey, linear and rotary touch
sensors
Up to 11 timers
One 16-bit 7-channel advanced-control
timer for 6 channels PWM output, with
deadtime generation and emergency stop
One 32-bit and one 16-bit timer, with up to
4 IC/OC, usable for IR control decoding
One 16-bit timer, with 2 IC/OC, 1 OCN,
deadtime generation and emergency stop
Two 16-bit timers, each with IC/OC and
OCN, deadtime generation, emergency
stop and modulator gate for IR control
One 16-bit timer with 1 IC/OC
Independent and system watchdog timers
SysTick timer: 24-bit downcounter
One 16-bit basic timer to drive the DAC
Calendar RTC with alarm and periodic wakeup
from Stop/Standby
Communication interfaces
Up to two I2C interfaces, one supporting
Fast Mode Plus (1 Mbit/s) with 20 mA
current sink, SMBus/PMBus and wakeup
from Stop mode
Up to two USARTs supporting master
synchronous SPI and modem control, one
with ISO7816 interface, LIN, IrDA
capability, auto baud rate detection and
wakeup feature
Up to two SPIs (18 Mbit/s) with 4 to 16
programmable bit frame, one with I2S
interface multiplexed
HDMI CEC interface, wakeup on header
reception
Serial wire debug (SWD)
96-bit unique ID
All packages ECOPACK®2
Table 1. Device summary
Reference Part number
STM32F051xx
STM32F051C4, STM32F051K4, STM32F051R4
STM32F051C6, STM32F051K6, STM32F051R6
STM32F051C8, STM32F051K8, STM32F051R8,
STM32F051T8
LQFP64 10x10 mm
LQFP48 7x7 mm
UFQFPN48 7x7 mm UFBGA64
5x5 mm
LQFP32 7x7 mm
)%*$
UFQFPN32 5x5 mm
WLCSP36
2.6x2.7 mm
www.st.com
Contents STM32F051x4 STM32F051x6 STM32F051x8
2/122 DocID022265 Rev 7
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 ARM®-Cortex®-M0 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 14
3.5 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.2 Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.8 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 17
3.9.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 17
3.10 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.12 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.13 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.14 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.2 General-purpose timers (TIM2, 3, 14, 15, 16, 17) . . . . . . . . . . . . . . . . . 22
3.14.3 Basic timer TIM6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
DocID022265 Rev 7 3/122
STM32F051x4 STM32F051x6 STM32F051x8 Contents
4
3.14.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.15 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 23
3.16 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17 Universal synchronous/asynchronous receiver/transmitter (USART) . . . 25
3.18 Serial peripheral interface (SPI) / Inter-integrated sound interface (I2S) . 26
3.19 High-definition multimedia interface (HDMI) - consumer
electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.20 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 47
6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 48
6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Contents STM32F051x4 STM32F051x6 STM32F051x8
4/122 DocID022265 Rev 7
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.17 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.18 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.19 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.20 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.21 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.22 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.1 UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.4 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.5 WLCSP36 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.6 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.7 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
7.8.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.8.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 112
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
DocID022265 Rev 7 5/122
STM32F051x4 STM32F051x6 STM32F051x8 List of tables
6
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F051xx family device features and peripheral count. . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 4. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 5. Capacitive sensing GPIOs available on STM32F051xx devices . . . . . . . . . . . . . . . . . . . . 20
Table 6. Effective number of capacitive sensing channels on STM32F051xx . . . . . . . . . . . . . . . . . 20
Table 7. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 8. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 9. STM32F051xx I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 10. STM32F051xx USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 11. STM32F051xx SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 12. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 13. Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 14. Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 37
Table 15. Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 38
Table 16. STM32F051xx peripheral register boundary addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 17. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 18. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 19. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 20. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 21. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 22. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 23. Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 24. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 25. Typical and maximum current consumption from VDD at 3.6 V . . . . . . . . . . . . . . . . . . . . . 50
Table 26. Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . 51
Table 27. Typical and maximum current consumption in Stop and Standby modes . . . . . . . . . . . . 52
Table 28. Typical and maximum current consumption from the VBAT supply. . . . . . . . . . . . . . . . . . . 53
Table 29. Typical current consumption, code executing from Flash memory,
running from HSE 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 30. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 31. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 32. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 33. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 34. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 35. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 36. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 37. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 38. HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 39. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 40. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 41. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 42. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 43. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 44. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 45. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 46. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 47. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
List of tables STM32F051x4 STM32F051x6 STM32F051x8
6/122 DocID022265 Rev 7
Table 48. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 49. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 50. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 51. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 52. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 53. RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 54. ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 55. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 56. Comparator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 57. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 58. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 59. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 60. IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 61. WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 62. I2C analog filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 63. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 64. I2S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 65. UFBGA64 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 66. UFBGA64 recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 67. LQFP64 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 68. LQFP48 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 69. UFQFPN48 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 70. WLCSP36 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 71. WLCSP36 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 72. LQFP32 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 73. UFQFPN32 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 74. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 75. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 76. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
DocID022265 Rev 7 7/122
STM32F051x4 STM32F051x6 STM32F051x8 List of figures
8
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 3. LQFP64 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 4. UFBGA64 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 5. LQFP48 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 6. UFQFPN48 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 7. WLCSP36 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 8. LQFP32 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 9. UFQFPN32 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 10. STM32F051x8 memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 11. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 12. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 13. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 15. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 16. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 17. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 18. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 19. HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 64
Figure 20. HSI14 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 21. TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 23. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 24. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 25. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 26. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 27. 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 28. Maximum VREFINT scaler startup time from power down . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 29. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 30. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 31. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 32. I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 33. I2S master timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 34. UFBGA64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 35. Recommended footprint for UFBGA64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 36. UFBGA64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 37. LQFP64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 38. Recommended footprint for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 39. LQFP64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 40. LQFP48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 41. Recommended footprint for LQFP48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 42. LQFP48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 43. UFQFPN48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 44. Recommended footprint for UFQFPN48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 45. UFQFPN48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 46. WLCSP36 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 47. Recommended pad footprint for WLCSP36 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 48. WLCSP36 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
List of figures STM32F051x4 STM32F051x6 STM32F051x8
8/122 DocID022265 Rev 7
Figure 49. LQFP32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 50. Recommended footprint for LQFP32 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 51. LQFP32 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 52. UFQFPN32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 53. Recommended footprint for UFQFPN32 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 54. UFQFPN32 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 55. LQFP64 PD max versus TA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Co' 't'e' Intengent Processors by ARM‘ ARM I POWERED
DocID022265 Rev 7 9/122
STM32F051x4 STM32F051x6 STM32F051x8 Introduction
26
1 Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F051xx microcontrollers.
This document should be read in conjunction with the STM32F0xxxx reference manual
(RM0091). The reference manual is available from the STMicroelectronics website
www.st.com.
For information on the ARM® Cortex®-M0 core, please refer to the Cortex®-M0 Technical
Reference Manual, available from the www.arm.com website.
Description STM32F051x4 STM32F051x6 STM32F051x8
10/122 DocID022265 Rev 7
2 Description
The STM32F051xx microcontrollers incorporate the high-performance ARM® Cortex®-M0
32-bit RISC core operating at up to 48 MHz frequency, high-speed embedded memories (up
to 64 Kbytes of Flash memory and 8 Kbytes of SRAM), and an extensive range of enhanced
peripherals and I/Os. All devices offer standard communication interfaces (up to two I2Cs,
up to two SPIs, one I2S, one HDMI CEC and up to two USARTs), one 12-bit ADC, one 12-bit
DAC, six 16-bit timers, one 32-bit timer and an advanced-control PWM timer.
The STM32F051xx microcontrollers operate in the -40 to +85 °C and -40 to +105 °C
temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of power-
saving modes allows the design of low-power applications.
The STM32F051xx microcontrollers include devices in seven different packages ranging
from 32 pins to 64 pins with a die form also available upon request. Depending on the
device chosen, different sets of peripherals are included.
These features make the STM32F051xx microcontrollers suitable for a wide range of
applications such as application control and user interfaces, hand-held equipment, A/V
receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications,
PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs.
DocID022265 Rev 7 11/122
STM32F051x4 STM32F051x6 STM32F051x8 Description
26
Table 2. STM32F051xx family device features and peripheral count
Peripheral STM32F051Kx STM32F051T8 STM32F051Cx STM32F051Rx
Flash memory (Kbyte) 163264 64 163264163264
SRAM (Kbyte) 8
Timers
Advanced
control 1 (16-bit)
General
purpose
5 (16-bit)
1 (32-bit)
Basic 1 (16-bit)
Comm.
interfaces
SPI [I2S](1) 1 [1](2) 1 [1](2) 1 [1](2) 2 [1] 2 [1]
I2C1
(3) 1(3) 1(3) 21
(3) 2
USART 1(4) 221
(4) 21
(4) 2
CEC 1
12-bit ADC
(number of channels)
1
(10 ext. + 3 int.)
1
(16 ext. + 3 int.)
12-bit DAC
(number of channels)
1
(1)
Analog comparator 2
GPIOs 25 (on LQFP32)
27 (on UFQFPN32) 29 39 55
Capacitive sensing channels 13 (on LQFP32)
14 (on UFQFPN32) 14 17 18
Max. CPU frequency 48 MHz
Operating voltage 2.0 to 3.6 V
Operating temperature Ambient operating temperature: -40°C to 85°C / -40°C to 105°C
Junction temperature: -40°C to 105°C / -40°C to 125°C
Packages LQFP32
UFQFPN32 WLCSP36 LQFP48
UFQFPN48
LQFP64
UFBGA64
1. The SPI1 interface can be used either in SPI mode or in I2S audio mode.
2. SPI2 is not present.
3. I2C2 is not present.
4. USART2 is not present.
”'°““‘°'\ £2235 1mm. 4 Charme‘s swatches SMS‘W Conlru‘ler SVNC SSAF I: MOSHSD stomcx scwcx NSSy'WS as AF Moswlso scsts as AF Temp AD ”JSEJCQQMADC w $222] @ Vnm y’fi E %% Power aomam ol ana‘og mocks
Description STM32F051x4 STM32F051x6 STM32F051x8
12/122 DocID022265 Rev 7
Figure 1. Block diagram
06Y9
3RZHUGRPDLQRIDQDORJEORFNV 9
%$7
FKDQQHOV
FRPSOFKDQQHOV
%5.(75LQSXWDV$)
#9
''
#9
''$
6\VWHPDQGSHULSKHUDO
FORFNV
JURXSVRI
FKDQQHOV
6<1&
$)
026,6'
0,620&.
6&.&.
166:6DV$)
#9
''$
9
''$
9
66$
6:&/.
6:',2
DV$)
[
$'LQSXW
26&B,1
26&B287
9
%$7
WR9
26&B,1
26&B287
7$03(557&
$/$50287
#9
%$7
026,0,62
6&.166
DV$)
+6,
+6,
/6,
3//&/.
9
''
,5B287DV$)
FKDQQHO
FRPSO%5.DV$)
FKDQQHO
FRPSO%5.DV$)
FKDQQHODV$)
FK(75DV$)
FK(75DV$)
*3'0$
FKDQQHOV
&257(;0&38
I
0$;
 0+]
6HULDO:LUH
'HEXJ
19,&
7RXFK
6HQVLQJ
&RQWUROOHU
3$'
$QDORJ
VZLWFKHV
(;7,7:.83
63,,6
63,
6<6&)*,)
'%*0&8
:LQGRZ:'*
$3%
$+%
&5&
5(6(7&/2&.
&21752/
3RZHU
&RQWUROOHU
;7$/26&
0+]
,QG:LQGRZ:'*
65$0
.%
7HPS
VHQVRU
,)
ELW$'&
57& %DFNXS
UHJ
57&LQWHUIDFH
5&0+]
5&0+]
5&N+]
3//
$+%GHFRGHU
;7$/N+]
65$0
FRQWUROOHU
%XVPDWUL[
)ODVK
PHPRU\
LQWHUIDFH
)ODVK*3/
XSWR.%
ELW
2EO
9
''
FKDQQHOV
FRPSO%5.DV$)
5;7;&76576
&.DV$)
5;7;&76576
&.DV$)
6&/6'$
DV$)
6&/6'$60%$
P$)0DV$)
&(&DV$)
,&
,&
ELW'$&
,) '$&B287DV$)
#9
''$
7,0(5
*3FRPSDUDWRU
*3FRPSDUDWRU
,1387
,1387
287387
DV$)
#9
''$
9
''$
6833/<
683(59,6,21
32:(5
#9
''$
#9
''
9
''
325
5HVHW
,QW
9
''
WR9
9
66
1567
9
''$
9
66$
9
''
39'
3253'5
92/75(*
9WR9
86$57
86$57
+'0,&(&
7,0(5
7,0(5
7,0(5
7,0(5
7,0(5
7,0(5ELW
3:07,0(5
3$>@ *3,2SRUW$
3%>@ *3,2SRUW%
3&>@ *3,2SRUW&
*3,2SRUW'
3'
3)>@
3)>@ *3,2SRUW)
DocID022265 Rev 7 13/122
STM32F051x4 STM32F051x6 STM32F051x8 Functional overview
26
3 Functional overview
Figure 1 shows the general block diagram of the STM32F051xx devices.
3.1 ARM®-Cortex®-M0 core
The ARM® Cortex®-M0 is a generation of ARM 32-bit RISC processors for embedded
systems. It has been developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced system response to interrupts.
The ARM® Cortex®-M0 processors feature exceptional code-efficiency, delivering the high
performance expected from an ARM core, with memory sizes usually associated with 8- and
16-bit devices.
The STM32F051xx devices embed ARM core and are compatible with all ARM tools and
software.
3.2 Memories
The device has the following features:
8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait
states and featuring embedded parity checking with exception generation for fail-critical
applications.
The non-volatile memory is divided into two arrays:
16 to 64 Kbytes of embedded Flash memory for programs and data
Option bytes
The option bytes are used to write-protect the memory (with 4 KB granularity) and/or
readout-protect the whole memory with the following options:
Level 0: no readout protection
Level 1: memory readout protection, the Flash memory cannot be read from or
written to if either debug features are connected or boot in RAM is selected
Level 2: chip readout protection, debug features (Cortex®-M0 serial wire) and
boot in RAM selection disabled
3.3 Boot modes
At startup, the boot pin and boot selector option bit are used to select one of the three boot
options:
boot from User Flash memory
boot from System Memory
boot from embedded SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by
using USART on pins PA14/PA15 or PA9/PA10.
Functional overview STM32F051x4 STM32F051x6 STM32F051x8
14/122 DocID022265 Rev 7
3.4 Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a CRC-32 (Ethernet) polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.
3.5 Power management
3.5.1 Power supply schemes
VDD = VDDIO1 = 2.0 to 3.6 V: external power supply for I/Os (VDDIO1) and the internal
regulator. It is provided externally through VDD pins.
VDDA = from VDD to 3.6 V: external analog power supply for ADC, DAC, Reset blocks,
RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC or DAC
are used). It is provided externally through VDDA pin. The VDDA voltage level must be
always greater or equal to the VDD voltage level and must be established first.
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
For more details on how to connect power pins, refer to Figure 13: Power supply scheme.
3.5.2 Power supply supervisors
The device has integrated power-on reset (POR) and power-down reset (PDR) circuits.
They are always active, and ensure proper operation above a threshold of 2 V. The device
remains in reset mode when the monitored supply voltage is below a specified threshold,
VPOR/PDR, without the need for an external reset circuit.
The POR monitors only the VDD supply voltage. During the startup phase it is required
that VDDA should arrive first and be greater than or equal to VDD.
The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce
the power consumption if the application design ensures that VDDA is higher than or
equal to VDD.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD power supply and compares it to the VPVD threshold. An interrupt can be generated
when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD
threshold. The interrupt service routine can then generate a warning message and/or put
the MCU into a safe state. The PVD is enabled by software.
3.5.3 Voltage regulator
The regulator has two operating modes and it is always enabled after reset.
Main (MR) is used in normal operating mode (Run).
Low power (LPR) can be used in Stop mode where the power demand is reduced.
DocID022265 Rev 7 15/122
STM32F051x4 STM32F051x6 STM32F051x8 Functional overview
26
In Standby mode, it is put in power down mode. In this mode, the regulator output is in high
impedance and the kernel circuitry is powered down, inducing zero consumption (but the
contents of the registers and SRAM are lost).
3.5.4 Low-power modes
The STM32F051xx microcontrollers support three low-power modes to achieve the best
compromise between low power consumption, short startup time and available wakeup
sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves very low power consumption while retaining the content of SRAM
and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the
HSE crystal oscillators are disabled. The voltage regulator can also be put either in
normal or in low power mode.
The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line
source can be one of the 16 external lines, the PVD output, RTC, I2C1, USART1,,
COMPx or the CEC.
The CEC, USART1 and I2C1 peripherals can be configured to enable the HSI RC
oscillator so as to get clock for processing incoming data. If this is used when the
voltage regulator is put in low power mode, the regulator is first switched to normal
mode before the clock is provided to the given peripheral.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the RTC
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pins, or an RTC event occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
3.6 Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example on
failure of an indirectly used external crystal, resonator or oscillator).
Several prescalers allow the application to configure the frequency of the AHB and the APB
domains. The maximum frequency of the AHB and the APB domains is 48 MHz.
:_: f
Functional overview STM32F051x4 STM32F051x6 STM32F051x8
16/122 DocID022265 Rev 7
Figure 2. Clock tree
3.7 General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions.
06Y9
26&B,1
26&B287
26&B,1
26&B287
,:'*
3//08/
0&2
0DLQFORFN
RXWSXW
+&/.
3//&/.
$+%FRUHPHPRU\'0$
&RUWH[)&/.IUHHUXQFORFN
$'&
0+]PD[
/6(
/6,
+6,
+6(
57&
3//65& 6:
57&&/.
57&6(/
7,0

)/,7)&/. )ODVKPHPRU\
SURJUDPPLQJ
LQWHUIDFH
+6,
/6(
,&
86$57
/6(
+6,
6<6&/.
3&/.
6<6&/.
+6,
3&/.
,6
&(&
&RUWH[
V\VWHPWLPHU
$3%
SHULSKHUDOV
35(',9
/6(
+6(
&66
/HJHQG
ZKLWH FORFNWUHHFRQWUROHOHPHQW
FORFNOLQH
FRQWUROOLQH
EODFN FORFNWUHHHOHPHQW

0+]
+6(26&


0+]5&
+6,
«
«


N+]
/6(26&
N+]
/6,5&
3//
[[
[
[[

86$576:
335(
335(+35(
&(&6:

,&6:
6<6&/.
+6, +6,
0+]
+6,5&

&.02'(
&.02'(
3//&/.
+6,
+6(
0&2
6<6&/.
+6,
/6,
/6(

7,0

DocID022265 Rev 7 17/122
STM32F051x4 STM32F051x6 STM32F051x8 Functional overview
26
The I/O configuration can be locked if needed following a specific sequence in order to
avoid spurious writing to the I/Os registers.
3.8 Direct memory access controller (DMA)
The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory
and memory-to-peripheral transfers.
The DMA supports circular buffer management, removing the need for user code
intervention when the controller reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with support for software
trigger on each channel. Configuration is made by software and transfer sizes between
source and destination are independent.
DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers
(except TIM14), DAC and ADC.
3.9 Interrupts and events
3.9.1 Nested vectored interrupt controller (NVIC)
The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to
32 maskable interrupt channels (not including the 16 interrupt lines of Cortex®-M0) and 4
priority levels.
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
3.9.2 Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 24 edge detector lines used to generate
interrupt/event requests and wake-up the system. Each line can be independently
configured to select the trigger event (rising edge, falling edge, both) and can be masked
independently. A pending register maintains the status of the interrupt requests. The EXTI
can detect an external line with a pulse width shorter than the internal clock period. Up to 55
GPIOs can be connected to the 16 external interrupt lines.
3.10 Analog-to-digital converter (ADC)
The 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature
Functional overview STM32F051x4 STM32F051x6 STM32F051x8
18/122 DocID022265 Rev 7
sensor, voltage reference, VBAT voltage measurement) channels and performs conversions
in single-shot or scan modes. In scan mode, automatic conversion is performed on a
selected group of analog inputs.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
3.10.1 Temperature sensor
The temperature sensor (TS) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC_IN16 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
3.10.2 Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and comparators. VREFINT is internally connected to the ADC_IN17 input channel. The
precise voltage of VREFINT is individually measured for each part by ST during production
test and stored in the system memory area. It is accessible in read-only mode.
Table 3. Temperature sensor calibration values
Calibration value name Description Memory address
TS_CAL1
TS ADC raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA= 3.3 V (± 10 mV)
0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2
TS ADC raw data acquired at a
temperature of 110 °C (± 5 °C),
VDDA= 3.3 V (± 10 mV)
0x1FFF F7C2 - 0x1FFF F7C3
Table 4. Internal voltage reference calibration values
Calibration value name Description Memory address
VREFINT_CAL
Raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA= 3.3 V (± 10 mV)
0x1FFF F7BA - 0x1FFF F7BB
DocID022265 Rev 7 19/122
STM32F051x4 STM32F051x6 STM32F051x8 Functional overview
26
3.10.3 VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT battery voltage
using the internal ADC channel ADC_IN18. As the VBAT voltage may be higher than VDDA,
and thus outside the ADC input range, the VBAT pin is internally connected to a bridge
divider by 2. As a consequence, the converted digital value is half the VBAT voltage.
3.11 Digital-to-analog converter (DAC)
The 12-bit buffered DAC channels can be used to convert digital signals into analog voltage
signal outputs. The chosen design structure is composed of integrated resistor strings and
an amplifier in non-inverting configuration.
This digital Interface supports the following features:
Left or right data alignment in 12-bit mode
Synchronized update capability
DMA capability
External triggers for conversion
Five DAC trigger inputs are used in the device. The DAC is triggered through the timer
trigger outputs and the DAC interface is generating its own DMA requests.
3.12 Comparators (COMP)
The device embeds two fast rail-to-rail low-power comparators with programmable
reference voltage (internal or external), hysteresis and speed (low speed for low power) and
with selectable output polarity.
The reference voltage can be one of the following:
External I/O
DAC output pins
Internal reference voltage or submultiple (1/4, 1/2, 3/4).Refer to Table 24: Embedded
internal reference voltage for the value and precision of the internal reference voltage.
Both comparators can wake up from STOP mode, generate interrupts and breaks for the
timers and can be also combined into a window comparator.
3.13 Touch sensing controller (TSC)
The STM32F051xx devices provide a simple solution for adding capacitive sensing
functionality to any application. These devices offer up to 18 capacitive sensing channels
distributed over 6 analog I/O groups.
Capacitive sensing technology is able to detect the presence of a finger near a sensor which
is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation
introduced by the finger (or any conductive object) is measured using a proven
implementation based on a surface charge transfer acquisition principle. It consists in
charging the sensor capacitance and then transferring a part of the accumulated charges
into a sampling capacitor until the voltage across this capacitor has reached a specific
threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the
Functional overview STM32F051x4 STM32F051x6 STM32F051x8
20/122 DocID022265 Rev 7
hardware touch sensing controller and only requires few external components to operate.
For operation, one capacitive sensing GPIO in each group is connected to an external
capacitor and cannot be used as effective touch sensing channel.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library, which is free to use and allows touch sensing functionality to be implemented reliably
in the end application.
Table 5. Capacitive sensing GPIOs available on STM32F051xx devices
Group Capacitive sensing
signal name Pin
name Group Capacitive sensing
signal name Pin
name
1
TSC_G1_IO1 PA0
4
TSC_G4_IO1 PA9
TSC_G1_IO2 PA1 TSC_G4_IO2 PA10
TSC_G1_IO3 PA2 TSC_G4_IO3 PA11
TSC_G1_IO4 PA3 TSC_G4_IO4 PA12
2
TSC_G2_IO1 PA4
5
TSC_G5_IO1 PB3
TSC_G2_IO2 PA5 TSC_G5_IO2 PB4
TSC_G2_IO3 PA6 TSC_G5_IO3 PB6
TSC_G2_IO4 PA7 TSC_G5_IO4 PB7
3
TSC_G3_IO1 PC5
6
TSC_G6_IO1 PB11
TSC_G3_IO2 PB0 TSC_G6_IO2 PB12
TSC_G3_IO3 PB1 TSC_G6_IO3 PB13
TSC_G3_IO4 PB2 TSC_G6_IO4 PB14
Table 6. Effective number of capacitive sensing channels on STM32F051xx
Analog I/O group
Number of capacitive sensing channels
STM32F051Rx STM32F051Cx STM32F051Tx STM32F051KxU
(UFQFPN32) STM32F051KxT
(LQFP32)
G1 33333
G2 33333
G3 32221
G4 33333
G5 33333
G6 33000
Number of capacitive
sensing channels 18 17 14 14 13
DocID022265 Rev 7 21/122
STM32F051x4 STM32F051x6 STM32F051x8 Functional overview
26
3.14 Timers and watchdogs
The STM32F051xx devices include up to six general-purpose timers, one basic timer and
an advanced control timer.
Table 7 compares the features of the different timers.
3.14.1 Advanced-control timer (TIM1)
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six
channels. It has complementary PWM outputs with programmable inserted dead times. It
can also be seen as a complete general-purpose timer. The four independent channels can
be used for:
input capture
output compare
PWM generation (edge or center-aligned modes)
one-pulse mode output
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
The counter can be frozen in debug mode.
Many features are shared with those of the standard timers which have the same
architecture. The advanced control timer can therefore work together with the other timers
via the Timer Link feature for synchronization or event chaining.
Table 7. Timer feature comparison
Timer
type Timer Counter
resolution Counter
type Prescaler
factor
DMA
request
generation
Capture/compare
channels Complementary
outputs
Advanced
control TIM1 16-bit Up, down,
up/down
integer from
1 to 65536 Yes 4 3
General
purpose
TIM2 32-bit Up, down,
up/down
integer from
1 to 65536 Yes 4 -
TIM3 16-bit Up, down,
up/down
integer from
1 to 65536 Yes 4 -
TIM14 16-bit Up integer from
1 to 65536 No 1 -
TIM15 16-bit Up integer from
1 to 65536 Yes 2 1
TIM16
TIM17 16-bit Up integer from
1 to 65536 Yes 1 1
Basic TIM6 16-bit Up integer from
1 to 65536 Yes - -
Functional overview STM32F051x4 STM32F051x6 STM32F051x8
22/122 DocID022265 Rev 7
3.14.2 General-purpose timers (TIM2, 3, 14, 15, 16, 17)
There are six synchronizable general-purpose timers embedded in the STM32F051xx
devices (see Table 7 for differences). Each general-purpose timer can be used to generate
PWM outputs, or as simple time base.
TIM2, TIM3
STM32F051xx devices feature two synchronizable 4-channel general-purpose timers. TIM2
is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a
16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent
channels each for input capture/output compare, PWM or one-pulse mode output. This
gives up to 12 input captures/output compares/PWMs on the largest packages.
The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advanced-
control timer via the Timer Link feature for synchronization or event chaining.
TIM2 and TIM3 both have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the
digital outputs from 1 to 3 hall-effect sensors.
Their counters can be frozen in debug mode.
TIM14
This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM14 features one single channel for input capture/output compare, PWM or one-pulse
mode output.
Its counter can be frozen in debug mode.
TIM15, TIM16 and TIM17
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single
channel for input capture/output compare, PWM or one-pulse mode output.
The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate
withTIM1 via the Timer Link feature for synchronization or event chaining.
TIM15 can be synchronized with TIM16 and TIM17.
TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and
independent DMA request generation.
Their counters can be frozen in debug mode.
3.14.3 Basic timer TIM6
This timer is mainly used for DAC trigger generation. It can also be used as a generic 16-bit
time base.
3.14.4 Independent watchdog (IWDG)
The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with
user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it
operates independently from the main clock, it can operate in Stop and Standby modes. It
DocID022265 Rev 7 23/122
STM32F051x4 STM32F051x6 STM32F051x8 Functional overview
26
can be used either as a watchdog to reset the device when a problem occurs, or as a free
running timer for application timeout management. It is hardware or software configurable
through the option bytes. The counter can be frozen in debug mode.
3.14.5 System window watchdog (WWDG)
The system window watchdog is based on a 7-bit downcounter that can be set as free
running. It can be used as a watchdog to reset the device when a problem occurs. It is
clocked from the APB clock (PCLK). It has an early warning interrupt capability and the
counter can be frozen in debug mode.
3.14.6 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
a 24-bit down counter
autoreload capability
maskable system interrupt generation when the counter reaches 0
programmable clock source (HCLK or HCLK/8)
3.15 Real-time clock (RTC) and backup registers
The RTC and the five backup registers are supplied through a switch that takes power either
on VDD supply when present or through the VBAT pin. The backup registers are five 32-bit
registers used to store 20 bytes of user application data when VDD power is not present.
They are not reset by a system or power reset, or at wake up from Standby mode.
The RTC is an independent BCD timer/counter. Its main features are the following:
calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format
automatic correction for 28, 29 (leap year), 30, and 31 day of the month
programmable alarm with wake up from Stop and Standby mode capability
on-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize the RTC with a master clock
digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy
two anti-tamper detection pins with programmable filter. The MCU can be woken up
from Stop and Standby modes on tamper event detection
timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop and Standby modes on timestamp event detection
reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision
Functional overview STM32F051x4 STM32F051x6 STM32F051x8
24/122 DocID022265 Rev 7
The RTC clock sources can be:
a 32.768 kHz external crystal
a resonator or oscillator
the internal low-power RC oscillator (typical frequency of 40 kHz)
the high-speed external clock divided by 32
3.16 Inter-integrated circuit interface (I2C)
Up to two I2C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both
can support Standard mode (up to 100 kbit/s) and Fast mode (up to 400 kbit/s) and, I2C1
also supports Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive.
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two
addresses, one with configurable mask). They also include programmable analog and
digital noise filters.
In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts
verifications and ALERT protocol management. I2C1 also has a clock domain independent
from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address
match.
The I2C peripherals can be served by the DMA controller.
Refer to Table 9 for the differences between I2C1 and I2C2.
Table 8. Comparison of I2C analog and digital filters
Aspect Analog filter Digital filter
Pulse width of
suppressed spikes 50 ns Programmable length from 1 to 15
I2Cx peripheral clocks
Benefits Available in Stop mode
–Extra filtering capability vs.
standard requirements
–Stable length
Drawbacks Variations depending on
temperature, voltage, process
Wakeup from Stop on address
match is not available when digital
filter is enabled.
Table 9. STM32F051xx I2C implementation
I2C features(1) I2C1 I2C2
7-bit addressing mode X X
10-bit addressing mode X X
Standard mode (up to 100 kbit/s) X X
Fast mode (up to 400 kbit/s) X X
Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive I/Os X -
Independent clock X -
DocID022265 Rev 7 25/122
STM32F051x4 STM32F051x6 STM32F051x8 Functional overview
26
3.17 Universal synchronous/asynchronous receiver/transmitter
(USART)
The device embeds up to two universal synchronous/asynchronous receivers/transmitters
(USART1, USART2) which communicate at speeds of up to 6 Mbit/s.
They provide hardware management of the CTS, RTS and RS485 DE signals,
multiprocessor communication mode, master synchronous communication and single-wire
half-duplex communication mode. USART1 supports also SmartCard communication (ISO
7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and has a
clock domain independent of the CPU clock, allowing to wake up the MCU from Stop mode.
The USART interfaces can be served by the DMA controller.
SMBus X -
Wakeup from STOP X -
1. X = supported.
Table 9. STM32F051xx I2C implementation (continued)
I2C features(1) I2C1 I2C2
Table 10. STM32F051xx USART implementation
USART modes/features(1)
1. X = supported.
USART1 USART2
Hardware flow control for modem X X
Continuous communication using DMA X X
Multiprocessor communication X X
Synchronous mode X X
Smartcard mode X -
Single-wire half-duplex communication X X
IrDA SIR ENDEC block X -
LIN mode X -
Dual clock domain and wakeup from Stop mode X -
Receiver timeout interrupt X -
Modbus communication X -
Auto baud rate detection X -
Driver Enable X X
Functional overview STM32F051x4 STM32F051x6 STM32F051x8
26/122 DocID022265 Rev 7
3.18 Serial peripheral interface (SPI) / Inter-integrated sound
interface (I2S)
Up to two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-
duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame size is configurable from 4 bits to 16 bits.
One standard I2S interface (multiplexed with SPI1) supporting four different audio standards
can operate as master or slave at half-duplex communication mode. It can be configured to
transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a
specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit
programmable linear prescaler. When operating in master mode, it can output a clock for an
external audio component at 256 times the sampling frequency.
3.19 High-definition multimedia interface (HDMI) - consumer
electronics control (CEC)
The device embeds a HDMI-CEC controller that provides hardware support for the
Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).
This protocol provides high-level control functions between all audiovisual products in an
environment. It is specified to operate at low speeds with minimum processing and memory
overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC
controller to wakeup the MCU from Stop mode on data reception.
3.20 Serial wire debug port (SW-DP)
An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected
to the MCU.
Table 11. STM32F051xx SPI/I2S implementation
SPI features(1)
1. X = supported.
SPI1 SPI2
Hardware CRC calculation X X
Rx/Tx FIFO X X
NSS pulse mode X X
I2S mode X -
TI mode X X
DocID022265 Rev 7 27/122
STM32F051x4 STM32F051x6 STM32F051x8 Pinouts and pin descriptions
36
4 Pinouts and pin descriptions
Figure 3. LQFP64 package pinout
06Y9
7RSYLHZ
/4)3























































9%$7
3&26&B,1
3)26&B,1
1567
3&
3&
3&
3&
966$
9''$
3$
3$
3$
9''
3%
3%
%227
3%
3%
3%
3%
3%
3'
3&
3&
3&
3$
3$
3)
3)
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3&
966
3)26&B287
3&26&B287
3$
3$
3&
3&
3%
3%
3%
3%
3%
966
9''
3$
3$
3)
3)
3$
Top View a o > I VBAT I PCIS I PCMVOSCSQJN I PCISVOSCSLOUT I PFUVOSCJN I PFtrosciouT I NRSTI VSSAI VDDAI PADI PM. PAZI IIIIIIIIIIII m mwkcv~cfimo §§E§EEEEE§§9
Pinouts and pin descriptions STM32F051x4 STM32F051x6 STM32F051x8
28/122 DocID022265 Rev 7
Figure 4. UFBGA64 package pinout
Figure 5. LQFP48 package pinout
06Y9
3$
3$
3$
3$
3$
3%
3%
3%
3%
3%
966
9''
9%$7
3&
3&26&B,1
3&26&B287
3)26&B,1
3)26&B287
1567
966$
9''$
3$
3$
3$
3)
3)
3$
3$
3$
3$
3$
3$
3%
3%
3%
3%
3$
3$
3%
3%
3%
3%
3%
%227
3%
3%
966
9''
7RSYLHZ
/4)3







































DocID022265 Rev 7 29/122
STM32F051x4 STM32F051x6 STM32F051x8 Pinouts and pin descriptions
36
Figure 6. UFQFPN48 package pinout
Figure 7. WLCSP36 package pinout
1. The above figure shows the package in top view, changing from bottom view in the previous document
versions.
(
[SRVH
G
SD
G
VDD PFOVOSCJN PF 1 705C70UT NRST VDDA PAD PM PA2 PAS PM PAS PAS F'A7 P80 P81 vss ‘5
Pinouts and pin descriptions STM32F051x4 STM32F051x6 STM32F051x8
30/122 DocID022265 Rev 7
Figure 8. LQFP32 package pinout
Figure 9. UFQFPN32 package pinout
06Y9
3$
3$
3$
3$
3$
3%
3%
966
9''
3)26&B,1
3)26&B287
1567
9''$
3$
3$
3$
3$
3$
3$
3$
3$
3$
3$
9''
3$
3%
3%
3%
3%
3%
%227
966
7RSYLHZ
/4)3























(
[
S
RVH
G
S
D
G
DocID022265 Rev 7 31/122
STM32F051x4 STM32F051x6 STM32F051x8 Pinouts and pin descriptions
36
Table 12. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and
after reset is the same as the actual pin name
Pin type
S Supply pin
I Input-only pin
I/O Input / output pin
I/O structure
FT 5 V-tolerant I/O
FTf 5 V-tolerant I/O, FM+ capable
TTa 3.3 V-tolerant I/O directly connected to ADC
TC Standard 3.3 V I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after
reset.
Pin
functions
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Table 13. Pin definitions
Pin number
Pin name
(function upon
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP64
UFBGA64
LQFP48/UFQFPN48
WLCSP36
LQFP32
UFQFPN32
Alternate functions Additional
functions
1 B2 1 - - - VBAT S - - Backup power supply
2 A2 2 A6 - - PC13 I/O TC (1)(2) -
RTC_TAMP1,
RTC_TS,
RTC_OUT,
WKUP2
3A13B6- - PC14-OSC32_IN
(PC14) I/O TC (1)(2) - OSC32_IN
4B14C6- -PC15-OSC32_OUT
(PC15) I/O TC (1)(2) - OSC32_OUT
5C15B52 2 PF0-OSC_IN
(PF0) I/O FT - - OSC_IN
6D16C53 3 PF1-OSC_OUT
(PF1) I/O FT - - OSC_OUT
Pinouts and pin descriptions STM32F051x4 STM32F051x6 STM32F051x8
32/122 DocID022265 Rev 7
7 E1 7 D5 4 4 NRST I/O RST - Device reset input / internal reset output
(active low)
8 E3 - - - - PC0 I/O TTa - EVENTOUT ADC_IN10
9 E2 - - - - PC1 I/O TTa - EVENTOUT ADC_IN11
10 F2 - - - - PC2 I/O TTa - EVENTOUT ADC_IN12
11 G1 - - - - PC3 I/O TTa - EVENTOUT ADC_IN13
12 F1 8 D6 16 0 VSSA S - (3) Analog ground
13 H1 9 E5 5 5 VDDA S - - Analog power supply
14 G2 10 F6 6 6 PA0 I/O TTa -
USART2_CTS,
TIM2_CH1_ETR,
COMP1_OUT,
TSC_G1_IO1
ADC_IN0,
COMP1_INM6,
RTC_TAMP2,
WKUP1
15 H2 11 D4 7 7 PA1 I/O TTa -
USART2_RTS,
TIM2_CH2,
TSC_G1_IO2,
EVENTOUT
ADC_IN1,
COMP1_INP
16 F3 12 E4 8 8 PA2 I/O TTa -
USART2_TX,
TIM2_CH3,
TIM15_CH1,
COMP2_OUT,
TSC_G1_IO3
ADC_IN2,
COMP2_INM6
17 G3 13 F5 9 9 PA3 I/O TTa -
USART2_RX,
TIM2_CH4,
TIM15_CH2,
TSC_G1_IO4
ADC_IN3,
COMP2_INP
18 C2 - - - - PF4 I/O FT - EVENTOUT -
19 D2 - - - - PF5 I/O FT - EVENTOUT -
20 H3 14 C3 10 10 PA4 I/O TTa -
SPI1_NSS,
I2S1_WS,
USART2_CK,
TIM14_CH1,
TSC_G2_IO1
ADC_IN4,
COMP1_INM4,
COMP2_INM4,
DAC_OUT1
21 F4 15 D3 11 11 PA5 I/O TTa -
SPI1_SCK,
I2S1_CK, CEC,
TIM2_CH1_ETR,
TSC_G2_IO2
ADC_IN5,
COMP1_INM5,
COMP2_INM5
Table 13. Pin definitions (continued)
Pin number
Pin name
(function upon
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP64
UFBGA64
LQFP48/UFQFPN48
WLCSP36
LQFP32
UFQFPN32
Alternate functions Additional
functions
DocID022265 Rev 7 33/122
STM32F051x4 STM32F051x6 STM32F051x8 Pinouts and pin descriptions
36
22 G4 16 E3 12 12 PA6 I/O TTa -
SPI1_MISO,
I2S1_MCK,
TIM3_CH1,
TIM1_BKIN,
TIM16_CH1,
COMP1_OUT,
TSC_G2_IO3,
EVENTOUT
ADC_IN6
23 H4 17 F4 13 13 PA7 I/O TTa -
SPI1_MOSI,
I2S1_SD,
TIM3_CH2,
TIM14_CH1,
TIM1_CH1N,
TIM17_CH1,
COMP2_OUT,
TSC_G2_IO4,
EVENTOUT
ADC_IN7
24 H5 - - - - PC4 I/O TTa - EVENTOUT ADC_IN14
25 H6 - - - - PC5 I/O TTa - TSC_G3_IO1 ADC_IN15
26 F5 18 F3 14 14 PB0 I/O TTa -
TIM3_CH3,
TIM1_CH2N,
TSC_G3_IO2,
EVENTOUT
ADC_IN8
27 G5 19 F2 15 15 PB1 I/O TTa -
TIM3_CH4,
TIM14_CH1,
TIM1_CH3N,
TSC_G3_IO3
ADC_IN9
28 G6 20 D2 - 16 PB2 I/O FT (4) TSC_G3_IO4 -
29 G7 21 - - - PB10 I/O FT (5)
I2C2_SCL,
CEC,
TIM2_CH3,
TSC_SYNC
-
30 H7 22 - - - PB11 I/O FT (5)
I2C2_SDA,
TIM2_CH4,
TSC_G6_IO1,
EVENTOUT
-
31 D4 23 F1 16 0 VSS S - - Ground
32 E4 24 E1 17 17 VDD S - - Digital power supply
Table 13. Pin definitions (continued)
Pin number
Pin name
(function upon
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP64
UFBGA64
LQFP48/UFQFPN48
WLCSP36
LQFP32
UFQFPN32
Alternate functions Additional
functions
Pinouts and pin descriptions STM32F051x4 STM32F051x6 STM32F051x8
34/122 DocID022265 Rev 7
33 H8 25 - - - PB12 I/O FT (5)
SPI2_NSS,
TIM1_BKIN,
TSC_G6_IO2,
EVENTOUT
-
34 G8 26 - - - PB13 I/O FT (5)
SPI2_SCK,
TIM1_CH1N,
TSC_G6_IO3
-
35 F8 27 - - - PB14 I/O FT (5)
SPI2_MISO,
TIM1_CH2N,
TIM15_CH1,
TSC_G6_IO4
-
36 F7 28 - - - PB15 I/O FT (5)
SPI2_MOSI,
TIM1_CH3N,
TIM15_CH1N,
TIM15_CH2
RTC_REFIN
37 F6 - - - - PC6 I/O FT - TIM3_CH1 -
38 E7 - - - - PC7 I/O FT - TIM3_CH2 -
39 E8 - - - - PC8 I/O FT - TIM3_CH3 -
40 D8 - - - - PC9 I/O FT - TIM3_CH4 -
41 D7 29 E2 18 18 PA8 I/O FT -
USART1_CK,
TIM1_CH1,
EVENTOUT,
MCO
-
42 C7 30 D1 19 19 PA9 I/O FT -
USART1_TX,
TIM1_CH2,
TIM15_BKIN,
TSC_G4_IO1
-
43 C6 31 C1 20 20 PA10 I/O FT -
USART1_RX,
TIM1_CH3,
TIM17_BKIN,
TSC_G4_IO2
-
44 C8 32 C2 21 21 PA11 I/O FT -
USART1_CTS,
TIM1_CH4,
COMP1_OUT,
TSC_G4_IO3,
EVENTOUT
-
Table 13. Pin definitions (continued)
Pin number
Pin name
(function upon
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP64
UFBGA64
LQFP48/UFQFPN48
WLCSP36
LQFP32
UFQFPN32
Alternate functions Additional
functions
DocID022265 Rev 7 35/122
STM32F051x4 STM32F051x6 STM32F051x8 Pinouts and pin descriptions
36
45 B8 33 A1 22 22 PA12 I/O FT -
USART1_RTS,
TIM1_ETR,
COMP2_OUT,
TSC_G4_IO4,
EVENTOUT
-
46 A8 34 B1 23 23 PA13
(SWDIO) I/O FT (6) IR_OUT,
SWDIO -
47 D6 35 - - - PF6 I/O FT - I2C2_SCL -
48 E6 36 - - - PF7 I/O FT - I2C2_SDA -
49 A7 37 B2 24 24 PA14
(SWCLK) I/O FT (6) USART2_TX,
SWCLK -
50 A6 38 A2 25 25 PA15 I/O FT -
SPI1_NSS,
I2S1_WS,
USART2_RX,
TIM2_CH1_ETR,
EVENTOUT
-
51B7---- PC10 I/OFT - -
52B6---- PC11 I/OFT - -
53 C5 - - - - PC12 I/O FT - -
54 B5 - - - - PD2 I/O FT - TIM3_ETR -
55 A5 39 B3 26 26 PB3 I/O FT -
SPI1_SCK,
I2S1_CK,
TIM2_CH2,
TSC_G5_IO1,
EVENTOUT
-
56 A4 40 A3 27 27 PB4 I/O FT -
SPI1_MISO,
I2S1_MCK,
TIM3_CH1,
TSC_G5_IO2,
EVENTOUT
-
57 C4 41 E6 28 28 PB5 I/O FT -
SPI1_MOSI,
I2S1_SD,
I2C1_SMBA,
TIM16_BKIN,
TIM3_CH2
-
Table 13. Pin definitions (continued)
Pin number
Pin name
(function upon
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP64
UFBGA64
LQFP48/UFQFPN48
WLCSP36
LQFP32
UFQFPN32
Alternate functions Additional
functions
Pinouts and pin descriptions STM32F051x4 STM32F051x6 STM32F051x8
36/122 DocID022265 Rev 7
58 D3 42 C4 29 29 PB6 I/O FTf -
I2C1_SCL,
USART1_TX,
TIM16_CH1N,
TSC_G5_IO3
-
59 C3 43 A4 30 30 PB7 I/O FTf -
I2C1_SDA,
USART1_RX,
TIM17_CH1N,
TSC_G5_IO4
-
60 B4 44 B4 31 31 BOOT0 I B - Boot memory selection
61 B3 45 - - 32 PB8 I/O FTf (4)(5)
I2C1_SCL,
CEC,
TIM16_CH1,
TSC_SYNC
-
62 A3 46 - - - PB9 I/O FTf (5)
I2C1_SDA,
IR_OUT,
TIM17_CH1,
EVENTOUT
-
63 D5 47 D6 32 0 VSS S - - Ground
64 E5 48 A5 1 1 VDD S - - Digital power supply
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These GPIOs must not be used as current sources (e.g. to drive an LED).
2. After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content
of the RTC registers which are not reset by the main reset. For details on how to manage these GPIOs, refer to the RTC
domain and RTC register descriptions in the reference manual.
3. Distinct VSSA pin is only available on packages with 48 and more pins. For all other packages, the pin number corresponds
to the VSS pin to which VSSA pad of the silicon die is connected.
4. On the LQFP32 package, PB2 and PB8 must be set to defined levels by software, as their corresponding pads on the
silicon die are left unconnected. Apply the same recommendations as for unconnected pins.
5. On the WLCSP36 package, PB8, PB9, PB10, PB11, PB12, PB13, PB14 and PB15 must be set to defined levels by
software, as their corresponding pads on the silicon die are left unconnected. Apply the same recommendations as for
unconnected pins.
6. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin
and the internal pull-down on the SWCLK pin are activated.
Table 13. Pin definitions (continued)
Pin number
Pin name
(function upon
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP64
UFBGA64
LQFP48/UFQFPN48
WLCSP36
LQFP32
UFQFPN32
Alternate functions Additional
functions
STM32F051x4 STM32F051x6 STM32F051x8
DocID022265 Rev 7 37/122
Table 14. Alternate functions selected through GPIOA_AFR registers for port A
Pin name AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
PA0 - USART2_CTS TIM2_CH1_ETR TSC_G1_IO1 - - COMP1_OUT
PA1 EVENTOUT USART2_RTS TIM2_CH2 TSC_G1_IO2 - -
PA2 TIM15_CH1 USART2_TX TIM2_CH3 TSC_G1_IO3 - - - COMP2_OUT
PA3 TIM15_CH2 USART2_RX TIM2_CH4 TSC_G1_IO4 - - - -
PA4 SPI1_NSS, I2S1_WS USART2_CK - TSC_G2_IO1 TIM14_CH1 - - -
PA5 SPI1_SCK, I2S1_CK CEC TIM2_CH1_ETR TSC_G2_IO2 - - - -
PA6 SPI1_MISO, I2S1_MCK TIM3_CH1 TIM1_BKIN TSC_G2_IO3 TIM16_CH1 EVENTOUT COMP1_OUT
PA7 SPI1_MOSI, I2S1_SD TIM3_CH2 TIM1_CH1N TSC_G2_IO4 TIM14_CH1 TIM17_CH1 EVENTOUT COMP2_OUT
PA8 MCO USART1_CK TIM1_CH1 EVENTOUT - - -
PA9 TIM15_BKIN USART1_TX TIM1_CH2 TSC_G4_IO1 - - - -
PA10 TIM17_BKIN USART1_RX TIM1_CH3 TSC_G4_IO2 - - - -
PA11 EVENTOUT USART1_CTS TIM1_CH4 TSC_G4_IO3 - - - COMP1_OUT
PA12 EVENTOUT USART1_RTS TIM1_ETR TSC_G4_IO4 - - - COMP2_OUT
PA13 SWDIO IR_OUT - - - - -
PA14 SWCLK USART2_TX - - - - - -
PA15 SPI1_NSS, I2S1_WS USART2_RX TIM2_CH1_ETR EVENTOUT - - -
STM32F051x4 STM32F051x6 STM32F051x8
38/122 DocID022265 Rev 7
Table 15. Alternate functions selected through GPIOB_AFR registers for port B
Pin name AF0 AF1 AF2 AF3
PB0 EVENTOUT TIM3_CH3 TIM1_CH2N TSC_G3_IO2
PB1 TIM14_CH1 TIM3_CH4 TIM1_CH3N TSC_G3_IO3
PB2 TSC_G3_IO4
PB3 SPI1_SCK, I2S1_CK EVENTOUT TIM2_CH2 TSC_G5_IO1
PB4 SPI1_MISO, I2S1_MCK TIM3_CH1 EVENTOUT TSC_G5_IO2
PB5 SPI1_MOSI, I2S1_SD TIM3_CH2 TIM16_BKIN I2C1_SMBA
PB6 USART1_TX I2C1_SCL TIM16_CH1N TSC_G5_IO3
PB7 USART1_RX I2C1_SDA TIM17_CH1N TSC_G5_IO4
PB8 CEC I2C1_SCL TIM16_CH1 TSC_SYNC
PB9 IR_OUT I2C1_SDA TIM17_CH1 EVENTOUT
PB10 CEC I2C2_SCL TIM2_CH3 TSC_SYNC
PB11 EVENTOUT I2C2_SDA TIM2_CH4 TSC_G6_IO1
PB12 SPI2_NSS EVENTOUT TIM1_BKIN TSC_G6_IO2
PB13 SPI2_SCK TIM1_CH1N TSC_G6_IO3
PB14 SPI2_MISO TIM15_CH1 TIM1_CH2N TSC_G6_IO4
PB15 SPI2_MOSI TIM15_CH2 TIM1_CH3N TIM15_CH1N
”i
DocID022265 Rev 7 39/122
STM32F051x4 STM32F051x6 STM32F051x8 Memory mapping
41
5 Memory mapping
To the difference of STM32F051x8 memory map in Figure 10, the two bottom code memory
spaces of STM32F051x4/STM32F051x6 end at 0x0000 3FFF/0x0000 7FFF and 0x0800
3FFF/0x0000 7FFF, respectively.
Figure 10. STM32F051x8 memory map
069
$+%
[))))))))
3HULSKHUDOV
65$0
)ODVKPHPRU\
5HVHUYHG
6\VWHPPHPRU\
2SWLRQ%\WHV
[(
)ODVKV\VWHP
PHPRU\RU65$0
GHSHQGLQJRQ%227
FRQILJXUDWLRQ
[
[(
[&
[$
[
[
[
[
[
[
[
[)))(&
[))))
[)))))))
[
5HVHUYHG
&2'(
$3%
$3%
5HVHUYHG
[
[
[
[
5HVHUYHG
[
$+%
[
5HVHUYHG
[))
[))
&RUWH[0LQWHUQDO
SHULSKHUDOV
5HVHUYHG
[))))&
5HVHUYHG
5HVHUYHG
5HVHUYHG
5HVHUYHG
5HVHUYHG
5HVHUYHG
5HVHUYHG
Memory mapping STM32F051x4 STM32F051x6 STM32F051x8
40/122 DocID022265 Rev 7
Table 16. STM32F051xx peripheral register boundary addresses
Bus Boundary address Size Peripheral
0x4800 1800 - 0x5FFF FFFF ~384 MB Reserved
AHB2
0x4800 1400 - 0x4800 17FF 1 KB GPIOF
0x4800 1000 - 0x4800 13FF 1 KB Reserved
0x4800 0C00 - 0x4800 0FFF 1 KB GPIOD
0x4800 0800 - 0x4800 0BFF 1 KB GPIOC
0x4800 0400 - 0x4800 07FF 1 KB GPIOB
0x4800 0000 - 0x4800 03FF 1 KB GPIOA
0x4002 4400 - 0x47FF FFFF ~128 MB Reserved
AHB1
0x4002 4000 - 0x4002 43FF 1 KB TSC
0x4002 3400 - 0x4002 3FFF 3 KB Reserved
0x4002 3000 - 0x4002 33FF 1 KB CRC
0x4002 2400 - 0x4002 2FFF 3 KB Reserved
0x4002 2000 - 0x4002 23FF 1 KB Flash memory interface
0x4002 1400 - 0x4002 1FFF 3 KB Reserved
0x4002 1000 - 0x4002 13FF 1 KB RCC
0x4002 0400 - 0x4002 0FFF 3 KB Reserved
0x4002 0000 - 0x4002 03FF 1 KB DMA
0x4001 8000 - 0x4001 FFFF 32 KB Reserved
APB
0x4001 5C00 - 0x4001 7FFF 9 KB Reserved
0x4001 5800 - 0x4001 5BFF 1 KB DBGMCU
0x4001 4C00 - 0x4001 57FF 3 KB Reserved
0x4001 4800 - 0x4001 4BFF 1 KB TIM17
0x4001 4400 - 0x4001 47FF 1 KB TIM16
0x4001 4000 - 0x4001 43FF 1 KB TIM15
0x4001 3C00 - 0x4001 3FFF 1 KB Reserved
0x4001 3800 - 0x4001 3BFF 1 KB USART1
0x4001 3400 - 0x4001 37FF 1 KB Reserved
0x4001 3000 - 0x4001 33FF 1 KB SPI1/I2S1
0x4001 2C00 - 0x4001 2FFF 1 KB TIM1
0x4001 2800 - 0x4001 2BFF 1 KB Reserved
0x4001 2400 - 0x4001 27FF 1 KB ADC
0x4001 0800 - 0x4001 23FF 7 KB Reserved
0x4001 0400 - 0x4001 07FF 1 KB EXTI
0x4001 0000 - 0x4001 03FF 1 KB SYSCFG + COMP
0x4000 8000 - 0x4000 FFFF 32 KB Reserved
DocID022265 Rev 7 41/122
STM32F051x4 STM32F051x6 STM32F051x8 Memory mapping
41
APB
0x4000 7C00 - 0x4000 7FFF 1 KB Reserved
0x4000 7800 - 0x4000 7BFF 1 KB CEC
0x4000 7400 - 0x4000 77FF 1 KB DAC
0x4000 7000 - 0x4000 73FF 1 KB PWR
0x4000 5C00 - 0x4000 6FFF 5 KB Reserved
0x4000 5800 - 0x4000 5BFF 1 KB I2C2
0x4000 5400 - 0x4000 57FF 1 KB I2C1
0x4000 4800 - 0x4000 53FF 3 KB Reserved
0x4000 4400 - 0x4000 47FF 1 KB USART2
0x4000 3C00 - 0x4000 43FF 2 KB Reserved
0x4000 3800 - 0x4000 3BFF 1 KB SPI2
0x4000 3400 - 0x4000 37FF 1 KB Reserved
0x4000 3000 - 0x4000 33FF 1 KB IWDG
0x4000 2C00 - 0x4000 2FFF 1 KB WWDG
0x4000 2800 - 0x4000 2BFF 1 KB RTC
0x4000 2400 - 0x4000 27FF 1 KB Reserved
0x4000 2000 - 0x4000 23FF 1 KB TIM14
0x4000 1400 - 0x4000 1FFF 3 KB Reserved
0x4000 1000 - 0x4000 13FF 1 KB TIM6
0x4000 0800 - 0x4000 0FFF 2 KB Reserved
0x4000 0400 - 0x4000 07FF 1 KB TIM3
0x4000 0000 - 0x4000 03FF 1 KB TIM2
Table 16. STM32F051xx peripheral register boundary addresses (continued)
Bus Boundary address Size Peripheral
Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
42/122 DocID022265 Rev 7
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 11.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 12.
Figure 11. Pin loading conditions Figure 12. Pin input voltage
069
0&8SLQ
& S)
069
0&8SLQ
9,1
.25 ,93
DocID022265 Rev 7 43/122
STM32F051x4 STM32F051x6 STM32F051x8 Electrical characteristics
90
6.1.6 Power supply scheme
Figure 13. Power supply scheme
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure the good functionality of
the device.
Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
44/122 DocID022265 Rev 7
6.1.7 Current consumption measurement
Figure 14. Current consumption measurement scheme
069
9%$7
9''
9''$
,''
,''$
,''B9%$7
DocID022265 Rev 7 45/122
STM32F051x4 STM32F051x6 STM32F051x8 Electrical characteristics
90
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 17: Voltage characteristics,
Table 18: Current characteristics and Table 19: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 17. Voltage characteristics(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
Symbol Ratings Min Max Unit
VDD–VSS External main supply voltage - 0.3 4.0 V
VDDA–VSS External analog supply voltage - 0.3 4.0 V
VDD–VDDA Allowed voltage difference for VDD > VDDA -0.4V
VBAT–VSS External backup supply voltage - 0.3 4.0 V
VIN(2)
2. VIN maximum must always be respected. Refer to Table 18: Current characteristics for the maximum
allowed injected current values.
Input voltage on FT and FTf pins VSS - 0.3 VDDIOx + 4.0(3)
3. Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is
enabled, the maximum limit is 4 V.
V
Input voltage on TTa pins VSS - 0.3 4.0 V
BOOT0 0 9.0 V
Input voltage on any other pin VSS - 0.3 4.0 V
|VDDx| Variations between different VDD power pins - 50 mV
|VSSx - VSS|Variations between all the different ground
pins -50mV
VESD(HBM)
Electrostatic discharge voltage
(human body model)
see Section 6.3.12: Electrical
sensitivity characteristics -
Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
46/122 DocID022265 Rev 7
Table 18. Current characteristics
Symbol Ratings Max. Unit
IVDD Total current into sum of all VDD power lines (source)(1) 120
mA
IVSS Total current out of sum of all VSS ground lines (sink)(1) -120
IVDD(PIN) Maximum current into each VDD power pin (source)(1) 100
IVSS(PIN) Maximum current out of each VSS ground pin (sink)(1) -100
IIO(PIN)
Output current sunk by any I/O and control pin 25
Output current source by any I/O and control pin -25
IIO(PIN)
Total output current sunk by sum of all I/Os and control pins(2) 80
Total output current sourced by sum of all I/Os and control pins(2) -80
IINJ(PIN)(3)
Injected current on B, FT and FTf pins -5/+0(4)
Injected current on TC and RST pin ± 5
Injected current on TTa pins(5) ± 5
IINJ(PIN) Total injected current (sum of all I/O and control pins)(6) ± 25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
3. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be
exceeded. Refer to Table 17: Voltage characteristics for the maximum allowed input voltage values.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
5. On these I/Os, a positive injection is induced by VIN > VDDA. Negative injection disturbs the analog performance of the
device. See note (2) below Table 54: ADC accuracy.
6. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 19. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 150 °C
DocID022265 Rev 7 47/122
STM32F051x4 STM32F051x6 STM32F051x8 Electrical characteristics
90
6.3 Operating conditions
6.3.1 General operating conditions
6.3.2 Operating conditions at power-up / power-down
The parameters given in Table 21 are derived from tests performed under the ambient
temperature condition summarized in Table 20.
Table 20. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency - 0 48
MHz
fPCLK Internal APB clock frequency - 0 48
VDD Standard operating voltage - 2.0 3.6 V
VDDA
Analog operating voltage
(ADC and DAC not used) Must have a potential equal
to or higher than VDD
VDD 3.6
V
Analog operating voltage
(ADC and DAC used) 2.4 3.6
VBAT Backup operating voltage - 1.65 3.6 V
VIN I/O input voltage
TC and RST I/O –0.3 VDDIOx+0.3
V
TTa I/O –0.3 VDDA+0.3(1)
FT and FTf I/O –0.3 5.5(1)
BOOT0 0 5.5
PD
Power dissipation at TA = 85 °C
for suffix 6 or TA = 105 °C for
suffix 7(2)
LQFP64 - 444
mW
LQFP48 - 364
LQFP32 - 357
UFQFPN32 - 526
UFQFPN48 - 625
UFBGA64 - 308
WLCSP36 - 333
TA
Ambient temperature for the
suffix 6 version
Maximum power dissipation –40 85
°C
Low power dissipation(3) –40 105
Ambient temperature for the
suffix 7 version
Maximum power dissipation –40 105
°C
Low power dissipation(3) –40 125
TJ Junction temperature range
Suffix 6 version –40 105
°C
Suffix 7 version –40 125
1. For operation with a voltage higher than VDDIOx + 0.3 V, the internal pull-up resistor must be disabled.
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax. See Section 7.8: Thermal characteristics.
3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.8:
Thermal characteristics).
Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
48/122 DocID022265 Rev 7
6.3.3 Embedded reset and power control block characteristics
The parameters given in Table 22 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 20: General operating
conditions.
Table 21. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate
-
0
µs/V
VDD fall time rate 20
tVDDA
VDDA rise time rate
-
0
VDDA fall time rate 20
Table 22. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPOR/PDR(1)
1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector
monitors only VDD.
Power on/power down
reset threshold
Falling edge(2)
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
1.80 1.88 1.96(3)
3. Data based on characterization results, not tested in production.
V
Rising edge 1.84(3) 1.92 2.00 V
VPDRhyst PDR hysteresis - - 40 - mV
tRSTTEMPO(4)
4. Guaranteed by design, not tested in production.
Reset temporization - 1.50 2.50 4.50 ms
Table 23. Programmable voltage detector characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPVD0 PVD threshold 0
Rising edge 2.1 2.18 2.26 V
Falling edge 2 2.08 2.16 V
VPVD1 PVD threshold 1
Rising edge 2.19 2.28 2.37 V
Falling edge 2.09 2.18 2.27 V
VPVD2 PVD threshold 2
Rising edge 2.28 2.38 2.48 V
Falling edge 2.18 2.28 2.38 V
VPVD3 PVD threshold 3
Rising edge 2.38 2.48 2.58 V
Falling edge 2.28 2.38 2.48 V
VPVD4 PVD threshold 4
Rising edge 2.47 2.58 2.69 V
Falling edge 2.37 2.48 2.59 V
VPVD5 PVD threshold 5
Rising edge 2.57 2.68 2.79 V
Falling edge 2.47 2.58 2.69 V
DocID022265 Rev 7 49/122
STM32F051x4 STM32F051x6 STM32F051x8 Electrical characteristics
90
6.3.4 Embedded reference voltage
The parameters given in Table 24 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 20: General operating
conditions.
6.3.5 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 14: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to CoreMark code.
VPVD6 PVD threshold 6
Rising edge 2.66 2.78 2.9 V
Falling edge 2.56 2.68 2.8 V
VPVD7 PVD threshold 7
Rising edge 2.76 2.88 3 V
Falling edge 2.66 2.78 2.9 V
VPVDhyst(1) PVD hysteresis - - 100 - mV
IDD(PVD) PVD current consumption - - 0.15 0.26(1) µA
1. Guaranteed by design, not tested in production.
Table 23. Programmable voltage detector characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 24. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage 40 °C < TA < +105 °C 1.2 1.23 1.25 V
tSTART
ADC_IN17 buffer startup
time ---10
(1) µs
tS_vrefint
ADC sampling time when
reading the internal
reference voltage
-4(1)
1. Guaranteed by design, not tested in production.
-- µs
VREFINT
Internal reference voltage
spread over the
temperature range
VDDA = 3 V - - 10(1) mV
TCoeff Temperature coefficient - - 100(1) -100(1) ppm/°C
DD
Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
50/122 DocID022265 Rev 7
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in analog input mode
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted to the fHCLK frequency:
0 wait state and Prefetch OFF from 0 to 24 MHz
1 wait state and Prefetch ON above 24 MHz
When the peripherals are enabled fPCLK = fHCLK
The parameters given in Table 25 to Table 31 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 20: General
operating conditions.
Table 25. Typical and maximum current consumption from VDD at 3.6 V
Symbol Parameter Conditions fHCLK
All peripherals enabled All peripherals disabled
Unit
Typ Max @ TA(1)
Typ Max @ TA(1)
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
IDD
Supply
current in
Run mode,
code
executing
from Flash
memory
HSE
bypass,
PLL on
48 MHz 22.0 22.8 22.8 23.8 11.8 12.7 12.7 13.3
mA
32 MHz 15.0 15.5 15.5 16.0 7.6 8.7 8.7 9.0
24 MHz 12.2 13.2 13.2 13.6 7.2 7.9 7.9 8.1
HSE
bypass,
PLL off
8 MHz 4.4 5.2 5.2 5.4 2.7 2.9 2.9 3.0
1 MHz 1.0 1.3 1.3 1.4 0.7 0.9 0.9 0.9
HSI clock,
PLL on
48 MHz 22.0 22.8 22.8 23.8 11.8 12.7 12.7 13.3
32 MHz 15.0 15.5 15.5 16.0 7.6 8.7 8.7 9.0
24 MHz 12.2 13.2 13.2 13.6 7.2 7.9 7.9 8.1
HSI clock,
PLL off 8 MHz 4.4 5.2 5.2 5.4 2.7 2.9 2.9 3.0
Supply
current in
Run mode,
code
executing
from RAM
HSE
bypass,
PLL on
48 MHz 22.2 23.2(2) 23.2 24.4(2) 12.0 12.7(2) 12.7 13.3(2)
32 MHz 15.4 16.3 16.3 16.8 7.8 8.7 8.7 9.0
24 MHz 11.2 12.2 12.2 12.8 6.2 7.9 7.9 8.1
HSE
bypass,
PLL off
8 MHz 4.0 4.5 4.5 4.7 1.9 2.9 2.9 3.0
1 MHz 0.6 0.8 0.8 0.9 0.3 0.6 0.6 0.7
HSI clock,
PLL on
48 MHz 22.2 23.2 23.2 24.4 12.0 12.7 12.7 13.3
32 MHz 15.4 16.3 16.3 16.8 7.8 8.7 8.7 9.0
24 MHz 11.2 12.2 12.2 12.8 6.2 7.9 7.9 8.1
HSI clock,
PLL off 8 MHz 4.0 4.5 4.5 4.7 1.9 2.9 2.9 3.0
DD DDA
DocID022265 Rev 7 51/122
STM32F051x4 STM32F051x6 STM32F051x8 Electrical characteristics
90
IDD
Supply
current in
Sleep
mode
HSE
bypass,
PLL on
48 MHz 14.0 15.3(2) 15.3 16.0(2) 2.8 3.0(2) 3.0 3.2(2)
mA
32 MHz 9.5 10.2 10.2 10.7 2.0 2.1 2.1 2.3
24 MHz 7.3 7.8 7.8 8.3 1.5 1.7 1.7 1.9
HSE
bypass,
PLL off
8 MHz 2.6 2.9 2.9 3.0 0.6 0.8 0.8 0.8
1 MHz 0.4 0.6 0.6 0.6 0.2 0.4 0.4 0.4
HSI clock,
PLL on
48 MHz 14.0 15.3 15.3 16.0 3.8 4.0 4.1 4.2
32 MHz 9.5 10.2 10.2 10.7 2.6 2.7 2.8 2.8
24 MHz 7.3 7.8 7.8 8.3 2.0 2.1 2.1 2.1
HSI clock,
PLL off 8 MHz 2.6 2.9 2.9 3.0 0.6 0.8 0.8 0.8
1. Data based on characterization results, not tested in production unless otherwise specified.
2. Data based on characterization results and tested in production (using one common test limit for sum of IDD and IDDA).
Table 25. Typical and maximum current consumption from VDD at 3.6 V (continued)
Symbol Parameter Conditions fHCLK
All peripherals enabled All peripherals disabled
Unit
Typ Max @ TA(1)
Typ Max @ TA(1)
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
Table 26. Typical and maximum current consumption from the VDDA supply
Symbol Parameter Conditions
(1) fHCLK
VDDA = 2.4 V VDDA = 3.6 V
Unit
Typ Max @ TA(2)
Typ Max @ TA(2)
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
IDDA
Supply
current in
Run or
Sleep
mode,
code
executing
from Flash
memory or
RAM
HSE
bypass,
PLL on
48 MHz 150 170(3) 178 182(3) 164 183(3) 195 198(3)
µA
32 MHz 104 121 126 128 113 129 135 138
24 MHz 82 96 100 103 88 102 106 108
HSE
bypass,
PLL off
8 MHz 2.0 2.7 3.1 3.3 3.5 3.8 4.1 4.4
1 MHz 2.0 2.7 3.1 3.3 3.5 3.8 4.1 4.4
HSI clock,
PLL on
48 MHz 220 240 248 252 244 263 275 278
32 MHz 174 191 196 198 193 209 215 218
24 MHz 152 167 173 174 168 183 190 192
HSI clock,
PLL off 8 MHz 72 79 82 83 83.5 91 94 95
1. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being
in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, IDDA is independent of
clock frequencies.
2. Data based on characterization results, not tested in production unless otherwise specified.
3. Data based on characterization results and tested in production (using one common test limit for sum of IDD and IDDA).
Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
52/122 DocID022265 Rev 7
Table 27. Typical and maximum current consumption in Stop and Standby modes
Sym-
bol Para-
meter Conditions
Typ @VDD (VDD = VDDA)Max
(1)
Unit
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V TA =
25 °C TA =
85 °C TA =
105 °C
IDD
Supply
current
in Stop
mode
Regulator in run
mode, all oscillators
OFF
15 15.1 15.3 15.5 15.7 16 (2) (2)
µA
Regulator in low-
power mode, all
oscillators OFF
3.2 3.3 3.4 3.5 3.7 4 (2) (2)
Supply
current
in
Standby
mode
LSI ON and IWDG
ON 0.8 1.0 1.1 1.2 1.4 1.5 - - -
LSI OFF and IWDG
OFF 0.7 0.8 0.9 1.0 1.1 1.3 2(2) 2.5 3(2)
IDDA
Supply
current
in Stop
mode
VDDA monitoring ON
Regulator in run
mode, all
oscillators OFF
1.9 2 2.2 2.3 2.5 2.6 3.5(2) 3.5 4.5(2)
Regulator in low-
power mode, all
oscillators OFF
1.9 2 2.2 2.3 2.5 2.6 3.5(2) 3.5 4.5(2)
Supply
current
in
Standby
mode
LSI ON and
IWDG ON 2.3 2.5 2.7 2.9 3.1 3.3 - - -
LSI OFF and
IWDG OFF 1.8 1.9 2 2.2 2.3 2.5 3.5(2) 3.5 4.5(2)
Supply
current
in Stop
mode
VDDA monitoring OFF
Regulator in run
mode, all
oscillators OFF
1.1 1.2 1.2 1.2 1.3 1.4 - - -
Regulator in low-
power mode, all
oscillators OFF
1.1 1.2 1.2 1.2 1.3 1.4 - - -
Supply
current
in
Standby
mode
LSI ON and
IWDG ON 1.5 1.6 1.7 1.8 1.9 2.0 - - -
LSI OFF and
IWDG OFF 1 1.0 1.1 1.1 1.2 1.2 - - -
1. Data based on characterization results, not tested in production unless otherwise specified.
2. Data based on characterization results and tested in production (using one common test limit for sum of IDD and IDDA).
BAT
DocID022265 Rev 7 53/122
STM32F051x4 STM32F051x6 STM32F051x8 Electrical characteristics
90
Typical current consumption
The MCU is placed under the following conditions:
VDD = VDDA = 3.3 V
All I/O pins are in analog input configuration
The Flash memory access time is adjusted to fHCLK frequency:
0 wait state and Prefetch OFF from 0 to 24 MHz
1 wait state and Prefetch ON above 24 MHz
When the peripherals are enabled, fPCLK = fHCLK
PLL is used for frequencies greater than 8 MHz
AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and
500 kHz respectively
Table 28. Typical and maximum current consumption from the VBAT supply
Symbol Parameter Conditions
Typ @ VBAT Max(1)
Unit
1.65 V
1.8 V
2.4 V
2.7 V
3.3 V
3.6 V
TA =
25 °C TA =
85 °C TA =
105 °C
IDD_VBAT
RTC
domain
supply
current
LSE & RTC ON; “Xtal
mode”: lower driving
capability;
LSEDRV[1:0] = '00'
0.5 0.5 0.6 0.7 0.8 0.9 1.0 1.3 1.7
µA
LSE & RTC ON; “Xtal
mode” higher driving
capability;
LSEDRV[1:0] = '11'
0.8 0.8 0.9 1.0 1.1 1.2 1.3 1.6 2.1
1. Data based on characterization results, not tested in production.
Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
54/122 DocID022265 Rev 7
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 48: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
Table 29. Typical current consumption, code executing from Flash memory,
running from HSE 8 MHz crystal
Symbol Parameter fHCLK
Typical consumption in
Run mode Typical consumption in
Sleep mode Unit
Peripherals
enabled Peripherals
disabled Peripherals
enabled Peripherals
disabled
IDD
Current
consumption
from VDD
supply
48 MHz 23.2 13.3 13.2 3.1
mA
36 MHz 17.6 10.3 10.1 2.6
32 MHz 15.6 9.3 9.0 2.4
24 MHz 12.1 7.4 7.0 2.0
16 MHz 8.4 5.1 5.0 1.6
8 MHz 4.5 3.0 2.8 1.1
4 MHz 2.8 2.0 2.0 1.1
2 MHz 1.9 1.5 1.5 1.0
1 MHz 1.5 1.3 1.3 1.0
500 kHz 1.2 1.2 1.1 1.0
IDDA
Current
consumption
from VDDA
supply
48 MHz 151
A
36 MHz 113
32 MHz 101
24 MHz 79
16 MHz 57
8 MHz 2.2
4 MHz 2.2
2 MHz 2.2
1 MHz 2.2
500 kHz 2.2
DocID022265 Rev 7 55/122
STM32F051x4 STM32F051x6 STM32F051x8 Electrical characteristics
90
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 31: Peripheral current consumption), the I/Os used by an application also contribute
to the current consumption. When an I/O pin switches, it uses the current from the I/O
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load
(internal or external) connected to the pin:
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDIOx is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT + CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
ISW VDDIOx fSW C××=
Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
56/122 DocID022265 Rev 7
Table 30. Switching output I/O current consumption
Symbol Parameter Conditions(1)
1. CS = 7 pF (estimated value).
I/O toggling
frequency (fSW)Typ Unit
ISW
I/O current
consumption
VDDIOx = 3.3 V
C =CINT
4 MHz 0.07
mA
8 MHz 0.15
16 MHz 0.31
24 MHz 0.53
48 MHz 0.92
VDDIOx = 3.3 V
CEXT = 0 pF
C = CINT + CEXT+ CS
4 MHz 0.18
8 MHz 0.37
16 MHz 0.76
24 MHz 1.39
48 MHz 2.188
VDDIOx = 3.3 V
CEXT = 10 pF
C = CINT + CEXT+ CS
4 MHz 0.32
8 MHz 0.64
16 MHz 1.25
24 MHz 2.23
48 MHz 4.442
VDDIOx = 3.3 V
CEXT = 22 pF
C = CINT + CEXT+ CS
4 MHz 0.49
8 MHz 0.94
16 MHz 2.38
24 MHz 3.99
VDDIOx = 3.3 V
CEXT = 33 pF
C = CINT + CEXT+ CS
4 MHz 0.64
8 MHz 1.25
16 MHz 3.24
24 MHz 5.02
VDDIOx = 3.3 V
CEXT = 47 pF
C = CINT + CEXT+ CS
C = Cint
4 MHz 0.81
8 MHz 1.7
16 MHz 3.67
VDDIOx = 2.4 V
CEXT = 47 pF
C = CINT + CEXT+ CS
C = Cint
4 MHz 0.66
8 MHz 1.43
16 MHz 2.45
24 MHz 4.97
DocID022265 Rev 7 57/122
STM32F051x4 STM32F051x6 STM32F051x8 Electrical characteristics
90
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 31. The MCU is placed
under the following conditions:
All I/O pins are in analog mode
All peripherals are disabled unless otherwise mentioned
The given value is calculated by measuring the current consumption
with all peripherals clocked off
with only one peripheral clocked on
Ambient operating temperature and supply voltage conditions summarized in Table 17:
Voltage characteristics
Table 31. Peripheral current consumption
Peripheral Typical consumption at 25 °C Unit
AHB
BusMatrix(1) 5
µA/MHz
DMA1 7
SRAM 1
Flash memory interface 14
CRC 2
GPIOA 9
GPIOB 12
GPIOC 2
GPIOD 1
GPIOF 1
TSC 6
All AHB peripherals 55
Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
58/122 DocID022265 Rev 7
APB
APB-Bridge(2) 3
µA/MHz
SYSCFG 3
ADC(3) 5
TIM1 17
SPI1 10
USART1 19
TIM15 11
TIM16 8
TIM17 8
DBG (MCU Debug Support) 0.5
TIM2 17
TIM3 13
TIM6 3
TIM14 6
WWDG 1
SPI2 7
USART2 7
I2C1 4
I2C2 5
DAC 2
PWR 1
CEC 2
All APB peripherals 149
1. The BusMatrix automatically is active when at least one master is ON (CPU or DMA1)
2. The APBx Bridge is automatically active when at least one peripheral is ON on the same Bus.
3. The power consumption of the analog part (IDDA) of peripherals such as ADC is not included. Refer to the
tables of characteristics in the subsequent sections.
Table 31. Peripheral current consumption (continued)
Peripheral Typical consumption at 25 °C Unit
DocID022265 Rev 7 59/122
STM32F051x4 STM32F051x6 STM32F051x8 Electrical characteristics
90
6.3.6 Wakeup time from low-power mode
The wakeup times given in Table 32 are the latency between the event and the execution of
the first user instruction. The device goes in low-power mode after the WFE (Wait For
Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles
must be added to the following timings due to the interrupt latency in the Cortex M0
architecture.
The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode.
During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz.
The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode.
The wakeup source from Standby mode is the WKUP1 pin (PA0).
All timings are derived from tests performed under the ambient temperature and supply
voltage conditions summarized in Table 20: General operating conditions.
6.3.7 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 15: High-speed external clock
source AC timing diagram.
Table 32. Low-power mode wakeup timings
Symbol Parameter Conditions Typ @VDD = VDDA Max Unit
= 2.0 V = 2.4 V = 2.7 V = 3 V = 3.3 V
tWUSTOP
Wakeup from Stop
mode
Regulator in run
mode 3.23.12.92.92.85
µs
Regulator in low
power mode 7.05.85.24.94.69
tWUSTANDBY
Wakeup from
Standby mode - 60.4 55.6 53.5 52 51 -
tWUSLEEP
Wakeup from Sleep
mode - 4 SYSCLK cycles -
Table 33. High-speed external user clock characteristics
Symbol Parameter(1) Min Typ Max Unit
fHSE_ext User external clock source frequency - 8 32 MHz
VHSEH OSC_IN input pin high level voltage 0.7 VDDIOx -V
DDIOx V
VHSEL OSC_IN input pin low level voltage VSS - 0.3 VDDIOx
tw(HSEH)
tw(HSEL)
OSC_IN high or low time 15 - -
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time - - 20
Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
60/122 DocID022265 Rev 7
Figure 15. High-speed external clock source AC timing diagram
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 16.
Figure 16. Low-speed external clock source AC timing diagram
1. Guaranteed by design, not tested in production.
Table 34. Low-speed external user clock characteristics
Symbol Parameter(1)
1. Guaranteed by design, not tested in production.
Min Typ Max Unit
fLSE_ext User external clock source frequency - 32.768 1000 kHz
VLSEH OSC32_IN input pin high level voltage 0.7 VDDIOx -V
DDIOx V
VLSEL OSC32_IN input pin low level voltage VSS - 0.3 VDDIOx
tw(LSEH)
tw(LSEL)
OSC32_IN high or low time 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time - - 50
069
9+6(+
WI+6(


7+6(
W
WU+6(
9+6(/
WZ+6(+
WZ+6(/
069
9/6(+
WI/6(


7/6(
W
WU/6(
9/6(/
WZ/6(+
WZ/6(/
DocID022265 Rev 7 61/122
STM32F051x4 STM32F051x6 STM32F051x8 Electrical characteristics
90
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 35. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 17). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Table 35. HSE oscillator characteristics
Symbol Parameter Conditions(1)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
Min(2) Typ Max(2)
2. Guaranteed by design, not tested in production.
Unit
fOSC_IN Oscillator frequency - 4 8 32 MHz
RFFeedback resistor - - 200 - k
IDD HSE current consumption
During startup(3)
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time
--8.5
mA
VDD = 3.3 V,
Rm = 30 ,
CL = 10 pF@8 MHz
-0.4-
VDD = 3.3 V,
Rm = 45 ,
CL = 10 pF@8 MHz
-0.5-
VDD = 3.3 V,
Rm = 30 ,
CL = 5 pF@32 MHz
-0.8-
VDD = 3.3 V,
Rm = 30 ,
CL = 10 pF@32 MHz
-1-
VDD = 3.3 V,
Rm = 30 ,
CL = 20 pF@32 MHz
-1.5-
gm Oscillator transconductance Startup 10 - - mA/V
tSU(HSE)(4)
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
Startup time VDD is stabilized - 2 - ms
Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
62/122 DocID022265 Rev 7
Figure 17. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
obtained with typical external components specified in Table 36. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Table 36. LSE oscillator characteristics (fLSE = 32.768 kHz)
Symbol Parameter Conditions(1) Min(2) Typ Max(2) Unit
IDD LSE current consumption
low drive capability - 0.5 0.9
µA
medium-low drive capability - - 1
medium-high drive capability - - 1.3
high drive capability - - 1.6
gm
Oscillator
transconductance
low drive capability 5 - -
µA/V
medium-low drive capability 8 - -
medium-high drive capability 15 - -
high drive capability 25 - -
tSU(LSE)(3) Startup time VDDIOx is stabilized - 2 - s
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
2. Guaranteed by design, not tested in production.
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
DocID022265 Rev 7 63/122
STM32F051x4 STM32F051x6 STM32F051x8 Electrical characteristics
90
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 18. Typical application with a 32.768 kHz crystal
Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
6.3.8 Internal clock source characteristics
The parameters given in Table 37 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 20: General operating
conditions. The provided curves are characterization results, not tested in production.
H
Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
64/122 DocID022265 Rev 7
High-speed internal (HSI) RC oscillator
Figure 19. HSI oscillator accuracy characterization results for soldered parts
Table 37. HSI oscillator characteristics(1)
1. VDDA = 3.3 V, TA = -40 to 105°C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 8 - MHz
TRIM HSI user trimming step - - - 1(2)
2. Guaranteed by design, not tested in production.
%
DuCy(HSI) Duty cycle - 45(2) -55
(2) %
ACCHSI
Accuracy of the HSI
oscillator
TA = -40 to 105°C -2.8(3)
3. Data based on characterization results, not tested in production.
-3.8
(3)
%
TA = -10 to 85°C -1.9(3) -2.3
(3)
TA = 0 to 85°C -1.9(3) -2
(3)
TA = 0 to 70°C -1.3(3) -2
(3)
TA = 0 to 55°C -1(3) -2
(3)
TA = 25°C(4)
4. Factory calibrated, parts not soldered.
-1 - 1
tsu(HSI) HSI oscillator startup time - 1(2) -2
(2) µs
IDDA(HSI)
HSI oscillator power
consumption - - 80 100(2) µA
069
5<$>
"
."9
.*/
       









H
DocID022265 Rev 7 65/122
STM32F051x4 STM32F051x6 STM32F051x8 Electrical characteristics
90
High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)
Figure 20. HSI14 oscillator accuracy characterization results
Table 38. HSI14 oscillator characteristics(1)
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI14 Frequency - - 14 - MHz
TRIM HSI14 user-trimming step - - - 1(2)
2. Guaranteed by design, not tested in production.
%
DuCy(HSI14) Duty cycle - 45(2) -55
(2) %
ACCHSI14
Accuracy of the HSI14
oscillator (factory calibrated)
TA = –40 to 105 °C –4.2(3)
3. Data based on characterization results, not tested in production.
-5.1
(3) %
TA = –10 to 85 °C –3.2(3) -3.1
(3) %
TA = 0 to 70 °C –2.5(3) -2.3
(3) %
TA = 25 °C –1 - 1 %
tsu(HSI14) HSI14 oscillator startup time - 1(2) -2
(2) µs
IDDA(HSI14)
HSI14 oscillator power
consumption --100150
(2) µA
Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
66/122 DocID022265 Rev 7
Low-speed internal (LSI) RC oscillator
6.3.9 PLL characteristics
The parameters given in Table 40 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 20: General operating
conditions.
6.3.10 Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
Table 39. LSI oscillator characteristics(1)
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI Frequency 30 40 50 kHz
tsu(LSI)(2)
2. Guaranteed by design, not tested in production.
LSI oscillator startup time - - 85 µs
IDDA(LSI)(2) LSI oscillator power consumption - 0.75 1.2 µA
Table 40. PLL characteristics
Symbol Parameter Value Unit
Min Typ Max
fPLL_IN
PLL input clock(1)
1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the
range defined by fPLL_OUT
.
1(2) 8.0 24(2) MHz
PLL input clock duty cycle 40(2) -60
(2) %
fPLL_OUT PLL multiplier output clock 16(2) -48MHz
tLOCK PLL lock time - - 200(2)
2. Guaranteed by design, not tested in production.
µs
JitterPLL Cycle-to-cycle jitter - - 300(2) ps
Table 41. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max(1)
1. Guaranteed by design, not tested in production.
Unit
tprog 16-bit programming time TA = - 40 to +105 °C 40 53.5 60 µs
tERASE Page (1 KB) erase time TA = - 40 to +105 °C 20 - 40 ms
tME Mass erase time TA = - 40 to +105 °C 20 - 40 ms
IDD Supply current
Write mode - - 10 mA
Erase mode - - 12 mA
DocID022265 Rev 7 67/122
STM32F051x4 STM32F051x6 STM32F051x8 Electrical characteristics
90
6.3.11 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 43. They are based on the EMS levels and classes
defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Table 42. Flash memory endurance and data retention
Symbol Parameter Conditions Min(1)
1. Data based on characterization results, not tested in production.
Unit
NEND Endurance TA = –40 to +105 °C 10 kcycle
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Year1 kcycle(2) at TA = 105 °C 10
10 kcycle(2) at TA = 55 °C 20
Table 43. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, LQFP64, TA = +25 °C,
fHCLK = 48 MHz,
conforming to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP64, TA = +25°C,
fHCLK = 48 MHz,
conforming to IEC 61000-4-4
4B
Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
68/122 DocID022265 Rev 7
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (for example control registers)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
6.3.12 Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 44. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs. [fHSE/fHCLK]Unit
8/48 MHz
SEMI Peak level
VDD = 3.6 V, TA = 25 °C,
LQFP64 package
compliant with
IEC 61967-2
0.1 to 30 MHz -3
dBµV30 to 130 MHz 28
130 MHz to 1 GHz 23
EMI Level 4 -
DocID022265 Rev 7 69/122
STM32F051x4 STM32F051x6 STM32F051x8 Electrical characteristics
90
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
6.3.13 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal
product operation. However, in order to give an indication of the robustness of the
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests
are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
The characterization results are given in Table 47.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
Table 45. ESD absolute maximum ratings
Symbol Ratings Conditions Packages Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic discharge voltage
(human body model)
TA = +25 °C, conforming
to JESD22-A114 All 2 2000 V
VESD(CDM)
Electrostatic discharge voltage
(charge device model)
TA = +25 °C, conforming
to ANSI/ESD STM5.3.1 All C3 250 V
1. Data based on characterization results, not tested in production.
Table 46. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II level A
Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
70/122 DocID022265 Rev 7
6.3.14 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 48 are derived from tests
performed under the conditions summarized in Table 20: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant (except BOOT0).
Table 47. I/O current injection susceptibility
Symbol Description
Functional
susceptibility Unit
Negative
injection Positive
injection
IINJ
Injected current on BOOT0 –0 NA
mA
Injected current on PA10, PA12, PB4, PB5, PB10, PB15 and
PD2 pins with induced leakage current on adjacent pins less
than –10 µA
–5 NA
Injected current on all other FT and FTf pins –5 NA
Injected current on PA6 and PC0 0 +5
Injected current on all other TTa, TC and RST pins –5 +5
Table 48. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
Low level input
voltage
TC and TTa I/O - - 0.3 VDDIOx+0.07(1)
V
FT and FTf I/O - - 0.475 VDDIOx–0.2(1)
BOOT0 - - 0.3 VDDIOx–0.3(1)
All I/Os except
BOOT0 pin --0.3 V
DDIOx
VIH
High level input
voltage
TC and TTa I/O 0.445 VDDIOx+0.398(1) --
V
FT and FTf I/O 0.5 VDDIOx+0.2(1) --
BOOT0 0.2 VDDIOx+0.95(1) --
All I/Os except
BOOT0 pin 0.7 VDDIOx --
Vhys Schmitt trigger
hysteresis
TC and TTa I/O - 200(1) -
mVFT and FTf I/O - 100(1) -
BOOT0 - 300(1) -
DocID022265 Rev 7 71/122
STM32F051x4 STM32F051x6 STM32F051x8 Electrical characteristics
90
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 21 for standard I/Os, and in Figure 22 for
5 V-tolerant I/Os. The following curves are design simulation results, not tested in
production.
Ilkg Input leakage
current(2)
TC, FT and FTf I/O
TTa in digital mode
VSS VIN VDDIOx
--± 0.1
µA
TTa in digital mode
VDDIOx VIN VDDA
--1
TTa in analog mode
VSS VIN VDDA
--± 0.2
FT and FTf I/O
VDDIOx VIN 5 V --10
RPU
Weak pull-up
equivalent resistor
(3)
VIN = VSS 25 40 55 k
RPD
Weak pull-down
equivalent
resistor(3)
VIN = - VDDIOx 25 40 55 k
CIO I/O pin capacitance - - 5 - pF
1. Data based on design simulation only. Not tested in production.
2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 47:
I/O current injection susceptibility.
3. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimal (~10% order).
Table 48. I/O static characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
72/122 DocID022265 Rev 7
Figure 21. TC and TTa I/O input characteristics
Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics
06Y9
          



7(67('5$1*(
7(67('5$1*(
9
,+PLQ
 9
'',2[
&026VWDQGDUGUHTXLUHPHQW
9
,/PD[
 9
'',2[
&026VWDQGDUGUHTXLUHPHQW
81'(),1(',13875$1*(
9
,+PLQ
 9
'',2[

9
,/PD[
 9
'',2[

9,19
9'',2[9
77/VWDQGDUGUHTXLUHPHQW
77/VWDQGDUGUHTXLUHPHQW
06Y9
          



7(67('5$1*(
7(67('5$1*(
9
,+PLQ
 9
'',2[
&026VWDQGDUGUHTXLUHPHQW
9
,/PD[
 9
'',2[
&026VWDQGDUGUHTXLUHPHQW
81'(),1(',13875$1*(
9
,+PLQ
 9
'',2[

9,/PD[ 9'',2[
9,19
9'',2[9
77/VWDQGDUGUHTXLUHPHQW
77/VWDQGDUGUHTXLUHPHQW
DocID022265 Rev 7 73/122
STM32F051x4 STM32F051x6 STM32F051x8 Electrical characteristics
90
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or
source up to +/- 20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
The sum of the currents sourced by all the I/Os on VDDIOx, plus the maximum
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 17: Voltage characteristics).
The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of
the MCU sunk on VSS, cannot exceed the absolute maximum rating IVSS (see
Table 17: Voltage characteristics).
Output voltage levels
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 20: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or
TC unless otherwise specified).
Table 49. Output voltage characteristics(1)
Symbol Parameter Conditions Min Max Unit
VOL Output low level voltage for an I/O pin CMOS port(2)
|IIO| = 8 mA
VDDIOx 2.7 V
-0.4
V
VOH Output high level voltage for an I/O pin VDDIOx–0.4 -
VOL Output low level voltage for an I/O pin TTL port(2)
|IIO| = 8 mA
VDDIOx 2.7 V
-0.4
V
VOH Output high level voltage for an I/O pin 2.4 -
VOL(3) Output low level voltage for an I/O pin |IIO| = 20 mA
VDDIOx 2.7 V
-1.3
V
VOH(3) Output high level voltage for an I/O pin VDDIOx–1.3 -
VOL(3) Output low level voltage for an I/O pin
|IIO| = 6 mA
-0.4
V
VOH(3) Output high level voltage for an I/O pin VDDIOx–0.4 -
VOLFm+(3) Output low level voltage for an FTf I/O pin in
Fm+ mode
|IIO| = 20 mA
VDDIOx 2.7 V -0.4V
|IIO| = 10 mA - 0.4 V
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 17:
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings IIO.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. Data based on characterization results. Not tested in production.
Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
74/122 DocID022265 Rev 7
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 23 and
Table 50, respectively. Unless otherwise specified, the parameters given are derived from
tests performed under the ambient temperature and supply voltage conditions summarized
in Table 20: General operating conditions.
Table 50. I/O AC characteristics(1)(2)
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference
manual for a description of GPIO Port configuration register.
2. Guaranteed by design, not tested in production.
OSPEEDRy
[1:0]
value(1) Symbol Parameter Conditions Min Max Unit
x0
fmax(IO)out Maximum frequency(3)
3. The maximum frequency is defined in Figure 23.
CL = 50 pF
-2MHz
tf(IO)out Output fall time - 125
ns
tr(IO)out Output rise time - 125
01
fmax(IO)out Maximum frequency(3)
CL = 50 pF
-10MHz
tf(IO)out Output fall time - 25
ns
tr(IO)out Output rise time - 25
11
fmax(IO)out Maximum frequency(3)
CL = 30 pF, VDDIOx 2.7 V - 50
MHzCL = 50 pF, VDDIOx 2.7 V - 30
CL = 50 pF, VDDIOx < 2.7 V - 20
tf(IO)out Output fall time
CL = 30 pF, VDDIOx 2.7 V - 5
ns
CL = 50 pF, VDDIOx 2.7 V - 8
CL = 50 pF, VDDIOx < 2.7 V - 12
tr(IO)out Output rise time
CL = 30 pF, VDDIOx 2.7 V - 5
CL = 50 pF, VDDIOx 2.7 V - 8
CL = 50 pF, VDDIOx < 2.7 V - 12
Fm+
configuration
(4)
4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference
manual RM0091 for a detailed description of Fm+ I/O configuration.
fmax(IO)out Maximum frequency(3)
CL = 50 pF
-2MHz
tf(IO)out Output fall time - 12
ns
tr(IO)out Output rise time - 34
-t
EXTIpw
Pulse width of external
signals detected by
the EXTI controller
-10-ns
DocID022265 Rev 7 75/122
STM32F051x4 STM32F051x6 STM32F051x8 Electrical characteristics
90
Figure 23. I/O AC characteristics definition
6.3.15 NRST pin characteristics
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-
up resistor, RPU.
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 20: General operating conditions.
069
7


 


0D[LPXPIUHTXHQF\LVDFKLHYHGLIWW
ZKHQORDGHGE\&VHHWKHWDEOH,2$&FKDUDFWHULVWLFVGHILQLWLRQ
UI
U,2RXW
WI,2RXW
W
-
7DQGLIWKHGXW\F\FOHLV
Table 51. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST) NRST input low level voltage - - - 0.3 VDD+0.07(1)
V
VIH(NRST) NRST input high level voltage - 0.445 VDD+0.398(1) --
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis --200-mV
RPU
Weak pull-up equivalent
resistor(2) VIN = VSS 25 40 55 k
VF(NRST) NRST input filtered pulse - - - 100(1) ns
VNF(NRST) NRST input not filtered pulse
2.7 < VDD < 3.6 300(3) --
ns
2.0 < VDD < 3.6 500(3) --
1. Data based on design simulation only. Not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimal (~10% order).
3. Data based on design simulation only. Not tested in production.
Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
76/122 DocID022265 Rev 7
Figure 24. Recommended NRST pin protection
1. The external capacitor protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 51: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.
6.3.16 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 52 are derived from tests
performed under the conditions summarized in Table 20: General operating conditions.
Note: It is recommended to perform a calibration after each power-up.
069
5
38
9
''
,QWHUQDOUHVHW
([WHUQDO
UHVHWFLUFXLW

1567

)LOWHU
)
Table 52. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA
Analog supply voltage for
ADC ON - 2.4 - 3.6 V
IDDA (ADC)
Current consumption of
the ADC(1) VDDA = 3.3 V - 0.9 - mA
fADC ADC clock frequency - 0.6 - 14 MHz
fS(2) Sampling rate 12-bit resolution 0.043 - 1 MHz
fTRIG(2) External trigger frequency
fADC = 14 MHz,
12-bit resolution --823kHz
12-bit resolution - - 17 1/fADC
VAIN Conversion voltage range - 0 - VDDA V
RAIN(2) External input impedance See Equation 1 and
Table 53 for details --50k
RADC(2) Sampling switch
resistance ---1k
CADC(2) Internal sample and hold
capacitor ---8pF
tCAL(2)(3) Calibration time
fADC = 14 MHz 5.9 µs
-831/f
ADC
AIN ADC
DocID022265 Rev 7 77/122
STM32F051x4 STM32F051x6 STM32F051x8 Electrical characteristics
90
Equation 1: RAIN max formula
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
WLATENCY(2)(4) ADC_DR register ready
latency
ADC clock = HSI14
1.5 ADC
cycles + 2
fPCLK cycles
-
1.5 ADC
cycles + 3
fPCLK cycles
-
ADC clock = PCLK/2 - 4.5 - fPCLK
cycle
ADC clock = PCLK/4 - 8.5 - fPCLK
cycle
tlatr(2) Trigger conversion latency
fADC = fPCLK/2 = 14 MHz 0.196 µs
fADC = fPCLK/2 5.5 1/fPCLK
fADC = fPCLK/4 = 12 MHz 0.219 µs
fADC = fPCLK/4 10.5 1/fPCLK
fADC = fHSI14 = 14 MHz 0.179 - 0.250 µs
JitterADC ADC jitter on trigger
conversion fADC = fHSI14 -1-1/f
HSI14
tS(2) Sampling time
fADC = 14 MHz 0.107 - 17.1 µs
- 1.5 - 239.5 1/fADC
tSTAB(2) Stabilization time - 14 1/fADC
tCONV(2) Total conversion time
(including sampling time)
fADC = 14 MHz,
12-bit resolution 1-18µs
12-bit resolution 14 to 252 (tS for sampling +12.5 for
successive approximation) 1/fADC
1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 µA on IDDA and 60 µA
on IDD should be taken into account.
2. Guaranteed by design, not tested in production.
3. Specified value includes only ADC timing. It does not include the latency of the register access.
4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.
Table 52. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
RAIN
TS
fADC CADC 2N2+
()ln××
----------------------------------------------------------------RADC
<
Table 53. RAIN max for fADC = 14 MHz
Ts (cycles) tS (µs) RAIN max (k)(1)
1.5 0.11 0.4
7.5 0.54 5.9
13.5 0.96 11.4
AIN 1Ame
Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
78/122 DocID022265 Rev 7
28.52.0425.2
41.52.9637.2
55.5 3.96 50
71.5 5.11 NA
239.5 17.1 NA
1. Guaranteed by design, not tested in production.
Table 53. RAIN max for fADC = 14 MHz (continued)
Ts (cycles) tS (µs) RAIN max (k)(1)
Table 54. ADC accuracy(1)(2)(3)
Symbol Parameter Test conditions Typ Max(4) Unit
ET Total unadjusted error
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 k
VDDA = 3 V to 3.6 V
TA = 25 °C
±1.3 ±2
LSB
EO Offset error ±1 ±1.5
EG Gain error ±0.5 ±1.5
ED Differential linearity error ±0.7 ±1
EL Integral linearity error ±0.8 ±1.5
ET Total unadjusted error
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 k
VDDA = 2.7 V to 3.6 V
TA = - 40 to 105 °C
±3.3 ±4
LSB
EO Offset error ±1.9 ±2.8
EG Gain error ±2.8 ±3
ED Differential linearity error ±0.7 ±1.3
EL Integral linearity error ±1.2 ±1.7
ET Total unadjusted error
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 k
VDDA = 2.4 V to 3.6 V
TA = 25 °C
±3.3 ±4
LSB
EO Offset error ±1.9 ±2.8
EG Gain error ±2.8 ±3
ED Differential linearity error ±0.7 ±1.3
EL Integral linearity error ±1.2 ±1.7
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input
pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog
input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject
negative current.
Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 6.3.14 does not affect the ADC
accuracy.
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. Data based on characterization results, not tested in production.
DocID022265 Rev 7 79/122
STM32F051x4 STM32F051x6 STM32F051x8 Electrical characteristics
90
Figure 25. ADC accuracy characteristics
Figure 26. Typical connection diagram using the ADC
1. Refer to Table 52: ADC characteristics for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 13: Power supply
scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as
close as possible to the chip.
(
7
 7RWDO8QDMXVWHG(UURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHDFWXDODQGLGHDOWUDQVIHUFXUYHV
(
2
 2IIVHW(UURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHILUVWDFWXDOWUDQVLWLRQDQGWKHILUVW
LGHDORQH
(
*
 *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVW
LGHDOWUDQVLWLRQDQGWKHODVWDFWXDORQH
(
'
 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXP
GHYLDWLRQEHWZHHQDFWXDOVWHSVDQGWKHLGHDORQHV
(
/
 ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ
EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW
FRUUHODWLRQOLQH
([DPSOHRIDQDFWXDOWUDQVIHUFXUYH
7KHLGHDOWUDQVIHUFXUYH
(QGSRLQWFRUUHODWLRQOLQH




    9''$
966$
(2
(7
(/
(*
('
/6%,'($/



069
069
$,1[
 $

&
SDUDVLWLF
,
/
9
7
9
7
ELW
FRQYHUWHU
&
$'&
5
$'&
9
''$
6DPSOHDQGKROG$'&
FRQYHUWHU
5
$,1
9
$,1

Electrical characteristics STM32F051x4 STM32F051x6 STM32F051x8
80/122 DocID022265 Rev 7
6.3.17 DAC electrical specifications
Table 55. DAC characteristics
Symbol Parameter Min Typ Max Unit Comments
VDDA
Analog supply voltage for
DAC ON 2.4 - 3.6 V -
RLOAD(1) Resistive load with buffer
ON
5- - kLoad connected to VSSA
25 - - kLoad connected to VDDA
RO(1) Impedance output with
buffer OFF -- 15 k
When the buffer is OFF, the
Minimum resistive load between
DAC_OUT and VSS to have a
1% accuracy is 1.5 M
CLOAD(1) Capacitive load - - 50 pF
Maximum capacitive load at
DAC_OUT pin (when the buffer
is ON).
DAC_OUT
min(1)
Lower DAC_OUT voltage
with buffer ON 0.2 - - V
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input