Thermoelectric Module Brochure Datasheet by Laird Thermal Systems, Inc.

View All Related Products | Download PDF Datasheet
tems
Insert s
or images
Make box taller
as needed
Or delete box
Thermoelectric
Modules
Hnl Absuvhed [Euld Side] n-Tyua samlwnduclol Elunlrinal Immm (Calamicj ' Naglliva (-) Mun mam (Hm smz)
About Laird
Laird is a global technology company focused on providing
systems, components and solutions that protect electronics from
electromagnetic interference and heat, and that enable connectivity
in mission-critical wireless applications and antenna systems.
We are a global leader in the field of radio frequency (RF) engineering
and in the design, development and supply of innovative technology
that allows people, organisations and applications to connect
efficiently.
Our aim is to be a trusted partner to our customers by delivering
problem-solving solutions through Innovation, Reliable Fulfilment,
and Speed.
Laird partners with its customers to design custom thermal solutions
for applications in many industries including:
ti
Medical Imaging
tt
Industrial Laser Systems
Optoelectronics
titi
ti
Aerospace Defense

ti
As an industry leader in high-performance Engineered Thermal
Systems that demand high system uptime, Laird provides the
knowledge, innovation, and resources to ensure exceptional
thermal performance and customer satisfaction for applications in
the medical, analytical, telecom, industrial, and consumer markets.
A Brief Introduction to
Thermoelectrics
Solid state heat pumps have been in existence since the discovery of
the Peltier effect in 1834. The devices became commercially available
several decades ago with the development of advanced semiconductor
thermocouple materials in combination with ceramics substrates.
Thermoelectric modules (TEMs) are solid-state heat pumps that require
a heat exchanger to dissipate heat utilizing the Peltier Effect. During
operation, DC current flows through the TEM to create heat transfer
and a temperature differential across the ceramic substrates, causing
one side of the TEM to be cold, while the other side is hot. A standard
single-stage TEM can achieve temperature differentials of up to 70°C.
A typical TEM’s geometric footprint can vary from 2 x 2 mm’s to 62 x
62 mm’s and are light in weight. This makes thermoelectrics ideal for
applications with tight geometric space constraints and low weight
requirements when compared too much larger cooling technologies,
such as conventional compressor-based systems. TEMs can also be
used as a power generator to convert waste heat into usable output
DC power.
Thermoelectrics are ideal for applications that require active cooling
to below ambient and have cooling capacity requirements < 600
Watts. A design engineer should consider TEMs when the system
design criteria includes such factors as precise temperature control,
high reliability, compact geometry constraints, low weight and
environmental friendly requirements.
Benefits of Using
Thermoelectrics
TEMs have several advantages over alternate cooling technologies:
ti
ti
TEMs can cool devices down to well below ambient. Colder
temperatures can be achieved, down to minus 100°C, by using
ti
Thermoelectrics are able to heat and cool by simply reversing the
ti
temperature control to be very precise, where up to ±0.01°C can
ti
tiffi
ti
ti
ti
Devices are environmentally friendly because they use no CFCs
and electrical noise is minimal.
TEMs can be used as energy harvesters, turning waste heat into
usable output DC power.
a!) 551mm ”7 mmtmamm 4.”
Thermoelectric Product Line
Laird designs and manufactures thermoelectric modules (TEMs)
which adhere to strict process control standards and pass/fail
criteria, assuring our customers receive the best possible modules.
Our extensive standard product portfolio covers a wide range
of cooling capacities, temperature differentials, input power
requirements and geometric footprints. Standard finishing options
are available to accommodate alternate lead lengths, lapping
thickness tolerances, and moisture protective sealants. Standard
pre-tinning and solder constructions are available to accommodate
solder-able mounting of the TEM to the heat exchanger, or
processing of TEM through a reflow oven to solder onto an
optoelectronic package.
Laird offers several thermoelectric module product families that
can be classified by cooling capacity, temperature differential, form
factor or thermal cycling capability. Reference perceptual map as a
general guide as to where each product family fits with regards to these attributes.
Telecommunications
Optical components are used in backhaul communications to transmit data. Temperature stabilization of these devices is required to maintain
peak performance while ambient environment conditions fluctuate over time. Compact form factors are required to keep package size down
as well as no outgassing of thermal component.
Medical
Reagents are used in medical diagnostics to help analyze liquid samples obtained from patients to diagnose an illness. TEMs refrigerate the
reagents to extend their life and keep costs down. Molecular diagnostics use TEMs to thermal cycle DNA samples to create millions of strands
of DNA for analysis. Medical lasers use TEMs to keep temperature of laser stable and for patient comfort during treatment.
Industrial & Instrumentation
Operating IR detectors and CCD’s at low temperatures limits the noise they are exposed too. This expands the light spectrum they are able
to capture and increase resolution. Industrial lasers and metrology instrumentation use TEMs for temperature stabilization to maintain peak
performance. Digital printers use TEMs to control the humidity and optimize the ink drying process in high volume production runs.
Transportation
Advancements in transportation technology require continued innovations in thermal management solutions. For example, use of smart lighting
headlamps or industrial x-ray inspection systems, provide numerous benefits, however at increased temperatures that the devices must endure.
Active cooling mechanisms that feature the use of TEMs provide the thermal management solutions needed to operate each device within an
acceptable temperature range that optimizes its performance.
TEM Rapid Prototyping Center
Since there are so many unique attributes that need to be ascertained for each application,
often a customized TEM will yield a more optimal thermal solution. Laird offers strong
engineering services with a global presence that supports onsite concept generation,
thermal modeling, thermal design and rapid prototyping. We also offer validation test services to meet unique compliance standards for each
industry, such as Telcordia,
MIL-STDs or standards specific to unique application. Minimum order quantity (MOQ) applies for all custom TEM designs and validation testing.
Custom Thermoelectric Modules
Telecom Enclosures Laser Diodes
Pump Lasers
Photodiodes
ti
ti Medical Imaging
ti
Medical Lasers
titi
ti
Industrial Lasar Systems
Imaging Sensors
CCD Cameras
Thermal Imaging
Kiosks
ti
ti Heads-Up Displays
Lapping, Wiring
and Sealing
TEM Assembly
ttti
on Subtrates
ti
TE semiconductor
Processing
ti
" Ha _
PC Series
Designed for thermal
ti
temperature set points
ti
ti
large number of thermal
cycles are required
Specially constructed
to reduce the amount
of stress induced on
the TE elements during
ti
Tested to withstand
more than 1M cycles
ti
in performance
PART NO. QMAX
(WATTS)
IMAX
(AMPS)
VMAX
(VOLTS)
∆TMAX
(°C)
DIM A
(mm)
DIM B
(mm)
DIM C
(mm)
DIM D
(mm)
DIM E
(mm)
Wire
(AWG)
PC4,12,F1,3030,TA,W6 33.4 3.9 14.4 67 30 30 30 3.2 - 20
PC5,16,F1,4040,TA,W6 53.2 4.8 18.3 67 40 40 40 3.7 20 20
PC7,16,F1,4040,TA,W6 76.3 7 18.3 67 40 40 40 3.3 20 20
PC6,12,F1,4040,TA,W6 54.1 6.1 14.9 67 40 40 40 3.0 20 20
PC8,12,F1,4040,TA,W6 72 8.5 14.5 67 40 40 40 3.3 20 20
PC12,139,F1,3550,TA,W6 117 12.3 15.5 67 35 50 35 3.0 20 20
PART NO. QMAX(1)
(WATTS)
IMAX
(AMPS)
VMAX
(VOLTS)
∆TMAX
(°C)
DIM A
(mm)
DIM B
(mm)
DIM C
(mm)
DIM D(2)
(mm)
DIM E
(mm)
OT08,04,F0,0203,11,W2.25 0.22 0.8 0.5 67 1.8 3.4 3.4 2.4 -
OT08,08,F0,0305,11,W2.25 0.44 0.8 0.9 67 3.3 3.3 4.9 2.4 -
OT08,11,F1,0305,11,W2.25 0.6 0.8 1.33 67 3.4 5 3.4 2.4 -
OT08,18,F0,0505,11,W2.25 0.97 0.8 2.2 67 4.9 4.9 6.6 2.4 -
OT08,18,F2,0505,11,W2.25 0.97 0.8 2.2 67 5 5 6.7 2.4 -
OT08,32,F2,0707,11,W2.25 1.72 0.8 3.9 67 6.6 6.6 8.3 2.4 -
OT08,66,F0,1009,11,W2.25 3.6 0.8 7.9 67 9.8 8.9 11.4 2.4 -
OT12,12,F0,0406,11,W2.25 0.97 1.2 1.5 67 4.2 6.2 6.2 2.7 -
OT12,18,F0,0606,11,W2.25 1.46 1.2 2.1 67 6.2 6.2 8.3 2.7 -
OT12,18,F2A,0606,11,W2.25 1.46 1.2 2.1 67 6 6.2 7.2 2.7 -
OT12,62,F3,1211,11,W2.25 5.01 1.2 7.5 67 12.2 11.2 13.2 2.7 2.0
OT12,66,F0,1211,11,W2.25 5.3 1.2 8 67 12.3 11.3 14.4 2.7 -
OT15,30,F2A,0610,11,W2.25 3.03 1.5 3.6 67 6.2 10.3 12.3 2.1 -
OT15,66,F0,1211,11,W2.25 6.7 1.5 8 67 12.3 11.3 14.4 2.4 -
OT15,68,F1A,1313,11,W2.25 6.87 1.5 8.2 67 13.2 13.2 13.2 2.4 -
OT16,18,F2,0606,11,W2.25 2 1.6 2 67 6 7.6 6 2 -
OT20,12,F0,0406,11,W2.25 1.62 2 1.5 67 4.2 6.2 6.2 2.2 -
OT20,31,F1,0808,11,W2.25 4.2 2 3.7 67 8.1 8.1 8.1 2.2 -
OT20,32,F0,0808,11,W2.25 4.4 2 3.6 67 8.3 8.3 10.3 2.2 -
OT20,66,F0,1211,11,W2.25 8.8 2 7.8 67 12.1 11.1 14.2 2.5 -
OT24,31,F1,1010,TA,W2.25 5.3 2.5 3.5 65 10 10 10 2.5 -
OT20,30,F2A,0610,11,W2.25 4 2 3.6 67 6.2 10.3 12.3 1.8 -
OptoTECTM
Miniature Form Factor
ti
with melt temperature
of 138oC
Alumina or Aluminum
Nitride Substrates Available
Designed for laser
diodes, infrared
detectors, pump lasers
ti
Typical TEM Module

ti
OptoTEC – F0
OptoTEC – F2 OptoTEC – F3
OptoTEC – F1
SH Series RH Semes / f6
CP Series
Designed for high
current, large heat
ti
Wide product breadth
that covers many form
factors, input power
requirements and heat
ti
ti
titi
photonics laser systems and
tt
Annular Series
Features center hole for
transmission of light, wires,
ti
Round or square hole
fiti
Rapid prototyping available
to accommodate unique
shape requirements
PART NO. QMAX(1)
(WATTS)
IMAX
(AMPS)
VMAX
(VOLTS)
∆TMAX
(°C)
DIM A
(mm)
DIM B
(mm)
DIM C
(mm)
DIM D
(mm)
Wire
(AWG)
CP08,127,05,L1,W4.5 22.4 2.6 15.4 67 25 25 25 3.1 26
CP08,127,06,L1,W4.5 18.1 2.1 15.4 67 25 25 25 3.4 26
CP08,31,06,L1,W4.5 4.4 2.1 3.8 67 12 12 12 3.4 26
CP08,63,06,L1,W4.5 9 2.1 7.6 67 12 25 12 3.4 26
CP08,71,06,L,W4.5 10.1 2.1 8.6 67 18 18 18 3.4 26
CP085,127,06,L1,W4.5 20.2 2.7 15.3 66 30 30 30 3.6 26
CP10,127,05,L1,W4.5 33.4 3.9 15.4 67 30 30 30 3.2 24
CP10,127,06,L1,W4.5 25.7 3 15.4 67 30 30 30 3.6 24
CP10,127,08,L1,W4.5 21.4 2.5 15.4 67 30 30 30 4 24
CP10,131,04,L1,W4.5 54.1 6.1 14.9 67 40 23 40 3 24
CP10,254,06,L1,W4.5 51.4 3.0/6.0 30.8/15.4 67 60 30 30 3.6 24
CP10,31,05,L1,W4.5 8.2 3.9 3.8 67 15 15 15 3.2 24
CP10,31,06,L,W4.5 6.3 3 3.75 67 15 15 15 3.6 24
CP10,31,08,L1,W4.5 5.3 2.5 3.8 67 15 15 15 4 24
CP10,63,05,L1,W4.5 16.6 3.9 7.6 67 15 30 15 3.2 24
CP10,63,06,L1,W4.5 12.7 3 7.6 67 15 30 15 3.6 24
CP10,71,05,L,W4.4 18.7 3.9 8.6 67 23 23 23 3.2 24
CP10,71,06,L,W4.5 14.4 3 8.6 67 23 23 23 3.6 24
CP12,161,04,L1,W4.5 69.3 6.4 18.3 67 40 40 40 3.3 22
CP12,161,06,L1,W4.5 52.2 4.8 18.3 67 40 40 40 3.6 22
CP14,127,045,L1,W4.5 72 8.5 15.4 65 40 40 40 3.3 18
CP14,127,06,L1,W4.5 51.4 6 15.4 67 40 40 40 3.8 18
CP14,127,10,L1,W4.5 33.4 3.9 15.4 68 40 40 40 4.7 18
CP14,17,06,L,W4.5 6.9 6 2.06 67 15 15 15 3.8 18
CP14,17,10,L,W4.5 4.5 3.9 2.06 68 15 15 15 4.7 18
CP14,199,045,L1,W4.5 115.7 8.5 22.4 65 40 40 40 3.3 18
CP14,199,06,L1,W4.5 80.9 6 22.7 67 40 40 40 3.81 18
CP14,31,045,L,W4.5 20.4 8.7 4.0 68 15 30 15 3.32 18
CP14,31,10,L1,W4.5 8.2 3.9 3.75 68 20 20 20 4.7 18
CP14,35,045,L1,W4.5 19 8.5 4.2 65 15 30 15 3.3 18
CP14,63,045,L,W4.4 36.6 8.5 7.1 65 20 40 20 3.31 18
CP14,63,06,L,W4.5 25.4 6 7.1 67 20 40 20 3.81 18
CP14,63,10,L,W4.5 16.6 3.9 7.1 67 20 40 20 4.7 18
CP14,71,045,L1,W4.5 38.5 8.5 8.6 65 30 30 30 3.3 18
CP14,71,06,L1,W4.5 28.7 6 8.6 67 30 30 30 3.8 18
CP14,71,10,L1,W4.5 18.7 3.9 8.6 68 30 30 30 4.7 18
CP2,127,06,L1,W4.5 120 14 15.4 67 62 62 62 4.6 18
CP2,127,10,L1,W4.5 77.1 9 15.4 68 62 62 62 5.6 18
CP2,31,06,L1,W4.5 29.3 14 3.8 67 30 30 30 4.6 18
CP2,31,10,L1,W4.5 18.8 9 3.8 68 30 30 30 5.6 18
CP2,71,06,L1,W4.5 67 14 8.6 68 44 44 44 4.6 18
THERELECTRIC MODULES
PART NO. QMAX(1)
(WATTS)
IMAX
(AMPS)
VMAX
(VOLTS) TMAX (°C) DIM A
(mm)
DIM B
(mm)
DIM C
(mm)
DIM D
(mm)
DIM E
(mm)
RH14,14,045,L,W4.4 7.6 8.5 1.7 65 26 26 26 3.3 14
RH14,14,10,L,W4.5 3.7 3.9 1.7 68 26 26 26 4.7 14
RH14,14,06,L1,W4.5 5.7 6 1.7 67 26 26 26 3.8 14
RH14,32,06,L1,W4.5 12.9 6 3.9 67 44 55 55 3.8 27
SH10,23,06,L1,W4.5 4.7 3 2.8 67 15 15 15 3.6 7.2
SH08,28,05,L1,W4.5 4.9 2.6 3.9 67 14.7 10.3 14.7 3.1 4.4
SH10,125,05,L1,W4.5 32.9 3.9 15.2 67 30 30 30 3.2 3.6
SH14,125,10,L1,W4.5 32.9 3.9 15.2 68 40 40 40 4.7 4.7
SH14,125,06,L1,W4.5 50.7 6 15.2 67 40 40 40 3.8 4.7
SH14,125,045,L1,W4.5 67.7 8.5 15.2 65 40 40 40 3.3 4.7

Th = 25°C; 2) Thickness for non-metallized versions only.
ti
SH Series RH Series
ZT Series
Assembled with

semiconductor material
Achieves a higher
ffti
than standard single
stage TEMs
ti
require to reach colder
temperatures
PART NO. QMAX(1)
(WATTS)
IMAX
(AMPS)
VMAX
(VOLTS)
∆TMAX
(°C)
DIM A
(mm)
DIM B
(mm)
DIM C
(mm)
DIM D
(mm)
Wire
(AWG)
ZT4,7,F1,2020,TA,W8 18 3.9 8.8 74 20 20 20 3.6 22
ZT6,7,F1,3030,TA,W8 31 6.0 8.6 74 30 30 30 3.9 22
ZT4,12,F1,3030,TA,W8 35 3.9 16.4 74 30 30 30 3.6 22
ZT4,12,F1,4040,TA,W8 37 3.9 15.4 74 40 40 40 4.8 22
ZT6,12,F1,4040,TA,W8 55 6.0 15.4 74 40 40 40 3.9 22
ZT5,16,F1,4040,TA,W8 62 5.0 20 74 40 40 40 3.7 22
ZT8,12,F1,4040,TA,W8 77 8.5 15.4 72 40 40 40 3.8 22
ZT7,16,F1,4040,TA,W8 84 6.7 20 72 40 40 40 3.3 22
PolarTECTM
Porch style ceramic for
tt
Standard 4,6 and 8 Amp
fiti
Designed for high
ti
in consumer, food and
beverage markets
PART NO. QMAX(1)
(WATTS)
IMAX
(AMPS)
VMAX
(VOLTS)
∆TMAX
(°C)
DIM A
(mm)
DIM B
(mm)
DIM C
(mm)
DIM D
(mm)
Wire
(AWG)
P4,7,F2,3030,TA,W5 18 3.7 8.1 67 30 30 34 4.1 18
PT6,7,F2,3030,TA,W6 29 6 8.1 65 30 30 34 3.8 18
PT4,12,F2,3030,TA,W6 33 3.9 14.4 65 30 30 34 3.2 24
PT4,12,F2,4040,TA,W6 32 3.7 14.4 67 40 40 44 4.1 18
PT6,12,F2,4040,TA,W6 52 6 14.4 65 40 40 44 3.8 18
PT8,12,F2,4040,TA,W6 72 8.5 14.4 64 40 40 44 3.3 18
UltraTECTM
fl
up to 12.5W/cm2
High COP in low power
ti
Ideal for laser systems in the industrial and
medical markets and high powered projectors
PART NO. QMAX(1)
(WATTS)
IMAX
(AMPS)
VMAX
(VOLTS)
∆TMAX
(°C)
DIM A
(mm)
DIM B
(mm)
DIM C
(mm)
DIM D
(mm)
Wire
(AWG)
UT11,12,F2,3030,TA,W6 95 11 14.4 69 30 30 34 2.4 22
UT15,12,F2,4040,TA,W6 126 14.6 14.4 69 40 40 44 2.8 20
UT8,12,F2,3030,TA,W6 69 7.9 14.4 69 30 30 34 2.6 20
UT15,200,F2,4040,TA,W6 236 15.4 25 68 40 40 44 3.3 20
UT15,24,F2,5252,TA,W6 288 15.1 30.8 70 52 52 56 3.3 20
UT15,288,F2,5252,TA,W7 341 15.4 36 68 52 52 56 3.3 20
UT6,19,F1,4040,TA,W9 93 6 24.6 70 40 40 40 3.9 20
UT6,24,F1,5555,TA,W9 113 6 29.8 70 55 55 55 3.9 20
UT8,12,F2,2525,TA,W7 69 7.9 14.4 69 25 25 25 1.9 20
UT8,200,F2,4040,TA,W7 128 8.5 24.9 70 40 40 44 3.8 20
UT8,24,F1,5555,TA,W9 153 8.5 29.8 70 55 55 55 3.8 20
UT8,288,F2,5252,TA,W7 182 8.5 35.9 70 52 52 56 3.8 20
UT9,28,F2,4040,TA,W9 206 9.2 36.7 68 40 40 44 2.8 20

2) Thickness for non-metallized versions only.
ti
WWW.LAIRDTECH.COM
Multi-stage
Designed for large
ffti
ti
Custom designs available
to meet unique cooling
ffti
requirements
Ideal for CCD cameras, IR Detectors and
ti
PART NO. QMAX(1)
(WATTS)
IMAX
(AMPS)
VMAX
(VOLTS)
∆TMAX
(°C)
DIM A
(mm)
DIM B
(mm)
DIM C
(mm)
DIM D
(mm)
DIM E
(mm)
MS2,010,06,06,11,11,11,W2 0.35 1.1 0.9 92 3.2 3.2 3.9 3.9 4.2
MS2,024,06,06,11,11,11,W2 0.81 1.1 2.2 92 4.1 4.1 6.1 6.1 4.6
MS2,065,04,04,11,11,11,W4 1.1 0.5 5.5 82 12 4 14 6 4.7
MS2,049,10,10,15,15,11,W8 3.4 2.1 3.8 87 11.5 11.5 15 15 6.6
MS2,049,14,14,15,15,11,W8 6.6 4 3.8 87 15 15 20 20 7.2
MS2,068,14,14,15,15,11,W8 8.4 5 6.2 92 14.7 14.7 24 24 7.9
MS2,107,10,10,12,12,11,W8 9.2 3 9.2 89 22.6 22.6 22.6 22.6 6.25
MS2,051,22,25,22,25,11,W8 10.5 5.7 3.5 76 26 26 30 30 10.9
MS2,102,14,14,17,17,11,W8 12.1 4.3 8.2 87 20 20 30 30 7.5
MS2,190,10,10,12,12,11,W8 16.4 2.8 15.7 87 30 30 30 30 6.5
MS2,190,10,13,08,20,11,W8 16.4 2.8 15.6 87 30 30 30 30 6.6
MS2,192,14,20,15,25,11,W8 27.3 4.4 16 88 40 40 40 40 8.1
MS2,102,22,22,17,17,11,W8 29 10.3 7.87 87 30 30 44 44 9.1
MS2,192,14,20,11,18,11,W8 39.9 6.7 15.6 87 40 40 40 40 8.1
MS3,052,10,17,11,W8 1.4 1.8 3.3 99 7.2 7.2 15 15 9.8
MS3,070,20,25,11,W8 3 6.5 6.5 118 14 8 36 36 16
MS3,231,10,15,11,W8 6.9 1.9 15.5 104 15 15 30 30 9.5
MS3,119,14,15,11,W8 7.5 3.9 8 100 15 15 30 30 10.4
MS3,119,20,15,11,W8 14.9 8 8.2 100 22 22 44 44 12.9
MS4,108,10,20,11,W8 1.1 1.5 7.87 110 7.1 7.1 18 24 14.6
MS4,129,10,15,11,W8 1.9 1.8 8.2 115 8 8 23 23 12.5
MS4,115,14,15,11,W8 2.6 3.5 7.6 122 14.5 4.5 33 24 13.8
MS5,257,10,15,11,W8 2 1.5 14.5 123 8 8 30 30 15.4
ti
Module
HiTemp ET Series
Protects electronics in high temperature
environments that operate in excess of 80°C
tifiti
Designed for higher current and larger heat-
ti
PART NO. QMAX(1)
(WATTS)
IMAX
(AMPS)
VMAX
(VOLTS) ∆TMAX (°C) DIM A
(mm)
DIM B
(mm)
DIM C
(mm)
DIM D
(mm)
DIM E
(mm)
ET08, 32, F0, 0707, 11, W2.25 2.1 0.8 4.7 87 6.5 6.5 8.1 2.4
ET08, 66, F0, 1009, 11, W2.25 4.3 0.8 9.7 87 9.8 8.9 11.4 2.4
ET1.8, 31, F1, 0707, 11, W2.25 4.5 1.8 4.6 87 7.8 7.8 7.8 1.1
ET12, 18, F2A, 0606, 11, W2.25 1.8 1.2 2.7 87 6.1 6.2 7.2 2.7
ET12, 32, F0, 0808, 11, W2.25 3.1 1.2 4.7 87 8.1 8.1 10.2 2.7
ET12, 65, F2A, 1212, 11, W2.25 5.3 1.2 7.4 67 13.2 12.1 13.2 2.2
ET12, 65, F2A, 1312, 11, W2.25 5.3 1.2 7.4 67 13.2 12.1 13.2 2.2
ET15, 30, F2A, 0610, 11, W2.25 3.6 1.5 4.4 87 6.2 10.3 12.3 2.0
ET15, 31, F2A, 0909, 11, W2.25 3.7 1.5 4.6 87 8.8 8.8 11.0 2.7
ET15, 65, F2A, 1312, 11, W2.25 7.7 1.5 9.6 87 13.2 12.1 13.2 2.4
ET19, 23, F1N, 0608, 11, W2.25 1.9 2.7 65 6.0 8.2 6.0 1.65
ET19, 35, F1N, 0612, 11, W2.25 4.5 1.9 4 67 6.0 12.2 6.0 1.65
ET20, 24, F2A, 0709, 11, W2.25 3.3 2.0 2.7 67 6.6 8.8 10.8 2.0
ET20, 30, F2A, 0610, 11, W2.25 4.1 2.0 3.4 67 6.2 10.3 12.3 1.8
ET20, 31, F1A, 0909, 11, W2.25 4.2 2.0 3.5 67 8.8 8.8 8.8 2.2
ET20, 65, F2A, 1312, 11, W2.25 10.6 2.0 9.6 87 13.2 12.1 13.2 2.4
ET20, 68, F1A, 1313, 11, W2.25 9.3 2.0 7.8 67 13.2 13.2 13.2 2.2
ET2, 12, F2, 3030, TA, W6 23.8 2.3 18.6 87 30 30 34 3.4
ET2.3, 49, F1, 1919, TA, W6 33 3.2 18.6 87 19.4 19.4 19.4 3.6
ET2.5, 12, F1, 3030, TA, W4.5 24.5 2.5 18.6 87 30 30 30 4.0
ET2.6, 6, F1, 1225, TA, W6 10.8 2.0 9.3 87 12.5 25 12.5 3.4
ET2.6, 6, F1, 1225, TA, W6 13.3 2.6 9.3 87 12.5 25 12.5 3.2
ET3, 12, F2, 3030, TA, W6 33 3.2 18.6 87 30 30 34 3.6
ET4, 12, F1, 3030, TA, W4.5 41 3.9 18.6 87 30 30 30 3.2
ET4, 12, F2, 3030, TA, W6 41 3.8 18.6 87 30 30 34 3.2
ET4, 12, F2, 4040, TA, W6 39.2 3.9 18.6 87 40 40 44 4.1
ET4, 31, F1, 1515, TA, W4.5 9.9 3.9 4.6 87 15 15 15 3.2
ET4, 31, F1, 2020, TA, W6 8.7 3.8 4.6 87 20 20 20 4.7
ET4, 6, F2, 2138, TA, W6 19.5 3.8 9.3 87 20.6 38.4 43.2 3.8
ET4, 7, F1, 2323, TA, W4.5 22.8 3.9 10.4 87 23 23 23 3.2
ET4, 7, F2, 3030, TA, W6 21.9 3.8 10.4 87 30 30 34 4.1
ET5, 6, F1, 2040, TA, W6 26.3 5.0 9.3 87 20 40 20 3.6
ET6, 12, F1, 3030, TA, W6 4 6.0 18.6 87 30 30 30 3.2
ET6, 12, F1, 4040, TA, W6 63 6.0 18.6 87 40 40 40 3.8
ET6, 19, F1, 4040, TA, W6 96 6.0 29.3 87 40 40 40 3.9
ET6, 3, F1, 2020, TA, W6 15.2 6.0 4.6 87 20 20 20 3.2
ET6, 7, F2, 3030, TA, W6 34.9 6.0 10.4 87 30 30 34 3.8
ET7, 16, F1, 4040, TA, W6 88 6.7 23.7 87 40 40 40 3.2
ET7, 3, F1, 2020, TA, W4.5 19.4 7.7 4.6 87 20 20 20 3.5
ET8, 12, F1, 4040, TA, W6 88 8.5 18.6 87 40 40 40 3.3
ET8, 12, F2, 2525, TA, W6 81 7.8 18.6 87 24.6 24.3 26.9 2.0
ET8, 28, F2, 5252, TA, W6 200 8.5 42.5 87 52 52 56 3.8
ET8, 7, F2, 3030, TA, W6 49 8.5 10.4 87 30 30 34 3.3
ET9, 3, F1, 3030, TA, W6 23.2 9.0 4.6 87 30 30 30 5.6
ET9, 3, F2, 2525, TA, W6 24.8 9.8 4.6 87 25.4 25.4 28.7 5.0
ET11, 12, F2, 3030, TA, W6 112 11 18.7 87 30 30 34 2.4
ET14, 3, F1, 3030, TA, W6 36 14 4.6 87 30 30 30 2.4
ET15, 12, F2, 4040, TA, W6 149 15 18.7 87 40 40 44 2.8
ET15, 24, F2, 5252, TA, W6 283 15 35.4 87 52 52 56 3.3
ET15, 28, F2, 5252, TA, W6 338 15 42.3 87 52 52 56 3.3
ET25, 12, F2, 6262, TA, W6 258 25 18.6 87 62 62 62 4.1
ET-MS2, 010, 06, 06, 11, 11, 11 W2 0.3 1.1 1.1 92 3.2 3.2 3.9 3.9 4.2
ET-MS2, 024, 06, 06, 11, 11, 11 W2 0.8 1.1 1.1 92 4.1 4.1 6.1 6.1 4.6
ET-MS2, 192, 14, 20, 11, 18 11, W8 40 6.8 15.8 87 40 40 40 40 8.1
– F0
– F2
– F1
MULTI-
STAGE
—H-H-H-F hmthcbeumemfl 591mmmwflunmmmmmflrnu malchyounenm'emwmaom summ mum \mnm n...” . cm... samm ”MW, mu.” mmumm um.»m.mmmmmus mum (mm: mm (“mm-mm.“ CSLZZQT" AWN.“ mehlrd:mve"mumvmfllullmmhcruslamnrdvrmnlwuvmmmm We..." mummn um “WW“ W Wm.“ mam mu mm mm". mm m mm.” mm w. mm mm mm”, mumal mm: mammal m mmuml amen m mm mtwnmum mum! mammm mum" Naad \nzAkuh‘a Wm Cuuhng Rpumlemenp 11ml!!! ”mm mm a: (‘alzu‘alun O “mum Manna um (mum (mm mm Wm mumwm m z m m n
Thermal Wizard
The Thermal Wizard is an online tool that allows engineers
to specify a given set of input variables based on application
attributes and model the performance of the TEM prior to
trial. The tool contains several application examples and an
active datasheet that simulates how the TEM(s) will function
under a specific set of operating conditions. Available only
online, the Thermal Wizard is accessible from the Laird
website at lairdtech.com/thermal-wizard.
Americas: +1.919.597.7300
Europe: +46.31.420530
Asia: +86.755.2714.1166
www.lairdtech.com/thermal-wizard
THR-BRO-THERMOELECTRIC MODULES_07022018
Any information furnished by Laird and its agents is believed to be accurate and reliable. All specifications are subject to change without notice. Responsibility for the use and application of Laird materials
rests with the end user, since Laird and its agents cannot be aware of all potential uses. Laird makes no warranties as to the fitness, merchantability or suitability of any Laird materials or products for
any specific or general uses. Laird, Laird Technologies, Inc or any of its affiliates or agents shall not be liable for incidental or consequential damages of any kind. All Laird products are sold pursuant to
the Laird Technologies’ Terms and Conditions of sale in effect from time to time, a copy of which will be furnished upon request. © Copyright 2017 Laird Technologies, Inc. All Rights Reserved. Laird, Laird
Technologies, the Laird Logo, and other marks are trademarks or registered trademarks of Laird Technologies, Inc. or an affiliate company thereof. Other product or service names may be the property
of third parties. Nothing herein provides a license under any Laird or any third party intellectual property rights.
Finishing Options
Surface Finish Options CP OptoTEC HiTempET PolarTEC UltraTEC Multistage Center Hole
SH/RH
Metallized Hot/Cold Surface MM 00 - - 00 MM MM
Non-Metallized Hot and/or Cold face L 11 11 11 11 L L
 TT 22 - - 22 TT TT
 - 33 - - - - -
Au plating (Hot/Cold Surface) - GG - - GG - -
Example: 
for module sizes larger than 12 x 12 mm’s. Consult datasheet for module thicknesses for each surface finishing option. Contact Laird for finishing
options for Multistage Modules.
Thickness Tolerance Options CP OptoTEC HiTempET PolarTEC UltraTEC Multistage Center Hole
SH/RH
+/- 0.001” (0.025 mm) L1 TA TA TA TA - TA
+/- 0.0005” (0.013 mm) L2     - 
Example: CP10,127,05,L2 = thickness is 3.2 mm +/- 0.013 mm. Contact Laird for thickness options for Multistage Modules.
Moisture Protection Options CP OptoTEC HiTempET PolarTEC UltraTEC Multistage Center Hole
SH/RH
RTV perimeter seal, Color: Translucent or White RT RT RT RT RT RT RT
 EP EP EP EP EP EP EP
Example: CP10,127,05,L2,RT = RTV silicone perimeter seal
Silicone (RTV) is an all purpose sealant that exhibits good sealing characteristics and retains its elastomeric properties over a wide temperature range,
-60 to 200°C.
The sealant is non-corrosive to many chemicals and exhibits good electrical properties with low thermal conductivity.
Epoxy (EP) is an effective barrier to moisture that exhibits a useable temperature range of -40 to 130°C. When cured the material is completely uni-cellular and therefore the moisture
absorption is negligible. The material exhibits a low dielectric constant, low coefficient of thermal expansion and low shrinkage.
Wire Options CP OptoTEC HiTempET PolarTEC UltraTEC Multistage Center Hole
SH/RH
Custom lead length # in inches, (S denotes special
requirement)
W# W# W# W# W# W# W#
Example: CP10,127,05,L2,W8 = Wire length is 8” (203 mm). Reference datasheet for standard lead length, wire type and insulation sleeving.
Consult with Laird for wire bondable posts or thru hole mount.

Products related to this Datasheet

PELTIER MOD ZT4,12,F1,4040,TA,W8
PELTIER CP08,127,06,L1,RT,W4.5
PELTIER OT08,18,F0,0505,11,W2.25
PELTIER MOD ZT6,12,F1,4040,TA,W8
PELTIER MOD HT8,7,F2,3030,TA,W6
PELTIER MOD CP14,127,06,L1,W4.5
PELTIER MOD HT4,6,F2,2143,TA,W6
PELTIER MOD ZT7,16,F1,4040,TA,W8
PELTIER MOD ZT4,12,F1,3030,TA,W8
PELTIER MOD ZT5,16,F1,4040,TA,W8
PELTIER OT20,32,F0,0808,11,W2.25
PELTIER MOD 43.9X39.9X4.14MM
PELTIER CP14,127,06,L1,RT,W4.5
PELTIR ET20,68,F1A,1313,11,W2.25
PELTIER MOD ZT4,7,F1,2020,TA,W8
PELTIER CP14,127,06,L1,EP,W4.5
PELTIR ET19,35,F1N,0612,11,W2.25
PELTIR ET12,65,F2A,1312,GG,W2.25
PELTIER OT24,31,F1,1010,TA,W2.25
PELTIER UT15,12,F2,4040,TA,W6
PELTIER MOD 43.9X39.9X3.33MM
MS2,192,14,20,11,18,11,W8
PELTIER MOD ZT6,7,F1,3030,TA,W8
PELTIER UT15,200,F2,4040,TA,W6
PELTIER OT20,31,F1,0808,11,W2.25
PELTIER MOD HT4,7,F2,3030,TA,W6
PELTIR OT15,30,F2A,0610,11,W2.25
PELTIR ET12,65,F2A,1312,11,W2.25
PELTIER OT20,66,F0,1211,11,W2.25
PELTIR MS2,065,04,04,11,11,11,W4