TSH22 Datasheet by STMicroelectronics

View All Related Products | Download PDF Datasheet
1/11
HIGH GAIN BANDWIDTH PRODUCT :
25MHz
HIGH SLEW RATE : 15V/µs
SINGLE OR DUAL SUPPLY OPERATION :
3V TO 30V (±1.5V to ±15V)
LOW VOLTAGE NOISE : 14nV/Hz
NO PHASE INVERSION
ESD TOLERANCE : 2kV
LATCH-UP IMMUNITY
SPICE MACROMODEL INCLUDED IN THIS
SPECIFICATION
DESCRIPTION
TheTSH22 is a dual bipolar operational amplifier
offering a single supply operation from 3V to 30V
with very good performances : medium speed
(25MHz), unity gain stability and low noise.
The TSH22 is therefore an enhanced replacement
of standard dual operational amplifiers.
ORDER CODE
N = Dual in Line Package (DIP)
D = Small Outline Package (SO) - also available in Tape & Reel (DT)
PIN CONNECTIONS (top view)
Part Number Temperature Range Package
ND
TSH22I -40°C, +125°C ••
N
DIP8
(Plastic Package)
D
SO8
(Plastic Micropackage)
1
2
3
45
6
7
8
-
+-
+
Output 1
Inverting input 1
Non-inverting input 1
V
CC
V
CC
Output 2
Inverting input 2
Non-inverting input 2
-
+
TSH22
HIGH PERFORMANCE
DUAL BIPOLAR OPERATINAL AMPLIFIER
November 2001
Ompu 4» ,4 In PM
TSH22
2/11
SCHEMATIC DIAGRAM (1/2 TSH22)
ABSOLUTE MAXIMUM RATINGS
OPERATING CONDITIONS
Symbol Parameter Value Unit
VCC Supply Voltage ±18 to 36 V
Vid Differential Input Voltage 1) ±36 V
ViInput Voltage (see note 1) ±18 V
Output Short-circuit Duration 2) Infinite
Toper Operating Free-Air Temperature Range -40 to +125 °C
TjMaximum Junction Temperature +150 °C
Tstg Storage Temperature Range -65 to +150 °C
ptot Maximum Power Dissipation (see note 2) 500 mW
1. Either or both input voltages must not exceed the magnitude of VCC+ or VCC-
2. Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded
Symbol Parameter Value Unit
VCC Supply Voltage 3 to 30 V
2M? k9 E]
TSH22
3/11
ELECTRICAL CHARACTERISTICS
VCC+ = 15V, Vcc- = -15V, Tamb = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
Vio
Input Offset Voltage (Vic = 0V, Vo = 0V)
Vcc+ = +15V, Vcc- = -15V
Tmin Tamb Tmax
Vcc+ = +5V, Vcc- = 0V
2.5
3.5
2.5
mV
Vio Input Offset Voltage Drift (Vic = 0V, Vo = 0V) 2µV/°C
Iio Input Offset Current (Vic = 0V, Vo = 0V) 365nA
I
ib Input Bias Current (Vic = 0V, Vo = 0V) 100 650 nA
Vicm Common Mode Input Voltage Range Vcc- to
Vcc+-1.8V
V
Avd Large Signal Voltage Gain (RL = 2k, Vo = 0V to +10V
Tmin Tamb Tmax 32
20 100 V/mV
±Vopp
Output Voltage Swing (Vid = ±1V)
Vcc+ = +15V, Vcc- = -15V RL = 2k VOH
VOL
RL =10k VOH
VOL
Vcc+=+5V, Vcc-=0V RL = 2k VOH
VOL
13.4
13.4
3.7
13.9
-13.9
14
-14.7
0.15
-13.5
-14.1
0.2
V
Io
Output Short Circuit Current
(Vid = ±1V, Vo = 0V) Source
Sink
25
25 37
37
mA
CMR Common Mode Rejection Ratio (Vic = -15V to +13.2V) 80 100 dB
SVR Supply Voltage Rejection Ratio
Vcc+/Vcc- = +15V/-15V to +5V/-5V 90 105 dB
Icc
Supply Current (Vo = 0V, no load, each amplifier)
Vcc+ = +15V, Vcc- = -15V
Tmin Tamb Tmax
Vcc+=+5V, Vcc-=0V
2.15 2.75
3
2.75
mA
SR Slew Rate
(Vi = -10V to +10V, CL = 100pF, RL = 2k, AV = +1) 815 V/µs
GBP Gain Bandwith Product (f = 100kHz, RL = 2k, CL = 100pF) 17 25 MHz
B Unity Gain Bandwith (Open loop) 5 MHz
mPhase Margin RL = 2k
RL = 2k, CL = 100pF 50
40 Degrees
enEquivalent Input Noise Voltage (Rs = 100, f = 1kHz) 14
Vo1/Vo2 Channel Separation (f = 20Hz to 20kHz) 120 dB
THD Total Harmonic Distortion
(Vcc = ±15V, f = 1kHz, AVCL = 20dB, RL = 600, Vo = 3Vrms) 0.003 %
nV
Hz
------------
Cc
TSH22
4/11
MACROMODEL
** Standard Linear Ics Macromodels, 1993.
CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT TSH22 1 3 2 4 5 (analog)
********************************************************
*
.MODEL MDTH D IS=1E-8 KF=7.976636E-15
CJO=10F
* INPUT STAGE
CIP 2 5 1.200000E-11
CIN 1 5 1.200000E-11
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 1.083333E+00
RIN 15 16 1.083333E+00
RIS 11 15 8.942641E+00
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 2.400000E-04
CPS 11 15 10.5E-09
DINN 17 13 MDTH 400E-12
VIN 17 5 -0.200000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 1.800000E+00
FCP 4 5 VOFP 7.750000E+00
FCN 5 4 VOFN 7.750000E+00
FIBP 2 5 VOFN 5.000000E-04
FIBN 5 1 VOFP 5.000000E-04
* AMPLIFYING STAGE
FIP 5 19 VOFP 6.708333E+02
FIN 5 19 VOFN 6.708333E+02
GVNEG 5 19 5 13 1.395908E-05
GVPOS 5 19 4 13 1.395908E-05
RG1 19 5 8.056996E+04
RG2 19 4 8.056996E+04
CC 19 29 1.100000E-08
HZTP 30 29 VOFP 6.545046E+01
HZTN 5 30 VOFN 6.545046E+01
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 4.054054E+03
VIPM 28 4 1.500000E+02
HONM 21 27 VOUT 4.054054E+03
VINM 5 27 1.500000E+02
RPM1 5 80 1E+06
RPM2 4 80 1E+06
GAVPH 5 82 19 80 6.00E-07
RAVPHGH 82 4 3333222
RAVPHGB 82 5 3333222
RAVPHDH 82 83 1000000
RAVPHDB 82 84 1000000
CAVPHH 4 83 0.12243E-12
CAVPHB 5 84 0.12243E-12
EOUT 26 23 82 5 1
VOUT 23 5 0
ROUT 26 3 2.472597E+01
COUT 3 5 1.000000E-12
DOP 19 25 MDTH 400E-12
VOP 4 25 1.824860E+00
DON 24 19 MDTH 400E-12
VON 24 5 1.824860E+00
.ENDS
ELECTRICAL CHARACTERISTICS
Vcc = ±15V, Tamb = 25°C (unless otherwise specified)
Symbol Conditions Value Unit
Vid 0mV
A
vd RL = 2k100 dB
Icc No load, per operator 2 mA
Vicm -15.2 to 13.8 V
VOH RL = 2k+13.9 V
VOL RL = 2k-13.9 V
Isink Vo = 0V 40 mA
Isource Vo = 0V 40 mA
GBP RL = 2kΩ, CL = 100pF 34 MHz
SR RL = 2kΩ, CL = 100pF 10 V/µs
mRL = 2kΩ, CL = 100pF 36 Degrees
mRL = 2kΩ, CL = 300pF 26 Degrees
a 1 0 Eu 3 > v D i ‘ + “m" . f % D7 a 2 V g rm 7 25'0 m , 2m 3. > 5 s , em: 3 Ovevdwe = (vm , Wm] Time15ms/dw) 2 D 1 5 3 3 E 1 u E + a + a ‘ > z > S u; >’ 0 5 a; :15 m m, D, i? Overdnve @ mm :3 g. o % =9 > g > > 3 > 3 s a - 2 a s a WWW a: 25an 3 5 O 5 o Txme 1o Sys/dlv) mm m SpS/dw)
TSH22
5/11
APPLICATIONS INFORMATION
TSH22 IN COMPARATOR APPLICATION
The TSH22 is a dual high performances opera-
tional amplifier featuring speed of 30MHz and sin-
gle supply operation from 3V to 30V.
Most of operational amplifiers are not suited for
comparator use because of low transition speed,
output signal incompatible with standard logics
level and mainly, phase inversion.
The phase inversion occures when a strong differ-
ential signal is applied to the device inputs. The
output level is then inverted and shows a wrong
logic state. TSH22 does not present this problem-
atic behaviour.
Figure 1 : Basic comparator application
Figure 3 : Transition speed@ 50mV overdrive
Displayed curves below show the device re-
sponse in standard comparator configuration with-
out external components.
Transition speed : Typical transition speed under
a single 5V supply voltage is about 2µs from
50mV overdrive. VOH min. is 3.7V and VOL max. is
0.2V (2k load) making it compatible with stan-
dard logic families.
Figures 3 & 4 show output signal transition for a
50mV and 250mV input signal overdrive respec-
tively of 3µs and 1µs.
Figure 2 : Operating conditions
Figure 4 : Transition speed@ 250mV overdrive
V
in+
Vref
+5V
Vou
t
2k
W
TSH22
\npul & Oupul VoMageS, Vm (V)‘ V0 (V) do (‘1: ‘5 R) c m a m m Txme (Sans/dw)
TSH22
6/11
PHASE INVERSION
At high differential input voltage, the TSH22 keeps
the right output level thanks to its specific input
structures.
The advantage is obvious on the following figures
and can be also an advantage in linear use when
saturation might occure.
Figure 5 : Behaviour with TSH22
Figure 5 & 6 show the behaviour in follower stage
with saturation output of TSH22 versus 15MHz
standard operational amplifier.
Figure 6 : Saturation behaviour with 15MHz
standard operational amplifier
8
6
4
2
0
-2
-4
-6
-8 Time (50µs/div)
Input & Ouput Voltages, Vid (V), Vo (V)
Vid
Vo
suvvw Curve"! wm Wm a as eammmzomm We, suppw mm vac m Ompul 5am Cuvvem‘ ‘W, (m; Tmm) : 25'C v“ nsv v“, , w 4542 75 rs 4 u 3 a 9 ‘2 ‘5 Apphad Dmpm Vahage‘ vu (v) cL : was:
TSH22
7/11
INPUT OFFSET VOLTAGE DRIFT VERSUS
TEMPERATURE
SINK CURRENT
SLEW RATE @ 30V
SUPPLY CURRENT VERSUS SUPPLY
VOLTAGE (BOTH OP-AMPS)
SOURCE CURRENT
SLEW RATE @ 3V
0.4
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
-0.4
-50 -25 0 25 50 75 100 125
Temperature, Tamb (˚C)
Input Offset Voltage, Vio (mV)
50
45
40
35
30
25
20
15
10
5
0
-15 -12 -9 -6 -3 0 3 6 9 12 15
Tamb = 25˚C
Vcc = ±15V
Vid = 1V
Applied Output Voltage, Vo (V)
Output Sink Current, Isink (mA)
20
15
10
5
0
-5
-10
-15
-20 Time (0.5µs/div)
Output Voltage, Vo (V)
Tamb = 25˚C
Vcc = ±15V
Av = +1
RL = 2k
CL = 100pF
T
amb
= 25˚C
V
cc
= +2V/-1V
A
v
= +1
R
L
= 2k
C
L
= 100pF
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8 Time (0.2µs/div)
Output Voltage, V
o
(V)
Twme (UJps/dw) 15 3 10 >‘3 5 a; 5‘ o ‘>‘ 75 c5: 40 45 720 704703702 rm 0 0102 0304 Dwrerennal Inpm Vouage, v‘d (mV) 200 200 ‘50 A ‘50 A > E ‘00 g ma >f' so >? 50 % 3 u s 0 § — c >° 750 3 750 .5 z b; 400 a? 400 O 7150 450 7200 -200 Time (0.1 ps/dwv) x
TSH22
8/11
LARGE SIGNAL VOLTAGE GAIN @NO LOAD
SMALL SIGNAL RESPONSE @ 30V
UNITY GAIN BANDWITH @ 30V
LARGE SIGNAL VOLTAGE GAIN @ LOAD
SMALL SIGNAL RESPONSE @ 3V
UNITY GAIN BANDWITH @ 3V
20
15
10
5
0
-5
-10
-15
-20
-0.4
Output Voltage, Vo (V)
Differential Input Voltage, Vid (mV)
Tamb = 25˚C
Vcc = ±15V
No Load
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
10k 100k 1M 10M
45
40
35
30
25
20
15
10
5
0
-5
0
30
60
90
120
150
180
Phase
Gain
Fre
q
uenc
y
, F
(
Hz
)
Voltage Gain (dB)
Phase (degrees)
Tamb = 25˚C
Vcc = +2V/-1V
AVCL = 100
RL = 2k
CL = 100pF
é]
TSH22
9/11
CLOSED LOOP BANDWITH @ 30V CLOSED LOOP BANDWITH @ 3V
21
18
15
12
9
6
3
0
-3
-6
-9
100k 1M 10M
Fre
q
uenc
y
, F
(
Hz
)
Voltage Gain (dB)
Tamb = 25˚C
Vcc = ±15V
AVCL = 5,2,1
RL = 2k
CL = 100pF
AVCL = +5
AVCL = +2
AVCL = +1
21
18
15
12
9
6
3
0
-3
-6
-9
100k 1M 10M
Fre
q
uenc
y
, F
(
Hz
)
Voltage Gain (dB)
Tamb = 25˚C
Vcc = +2V/-1V
AVCL = 5,2,1
RL = 2k
CL = 100pF
A
VCL
= +5
A
VCL
= +2
A
VCL
= +1
e4 t): 3‘— ‘i _| BB1 1" L‘— 23 Z D WWI—IW‘ 5 5 .. 1 I ULIULI h\
TSH22
10/11
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC DIP
Dim. Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 3.32 0.131
a1 0.51 0.020
B 1.15 1.65 0.045 0.065
b 0.356 0.55 0.014 0.022
b1 0.204 0.304 0.008 0.012
D 10.92 0.430
E 7.95 9.75 0.313 0.384
e 2.54 0.100
e3 7.62 0.300
e4 7.62 0.300
F 6.6 0260
i 5.08 0.200
L 3.18 3.81 0.125 0.150
Z 1.52 0.060
TSH22
11/11
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
© http://www.st.com
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC MICROPACKAGE (SO)
Dim. Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 1.75 0.069
a1 0.1 0.25 0.004 0.010
a2 1.65 0.065
a3 0.65 0.85 0.026 0.033
b 0.35 0.48 0.014 0.019
b1 0.19 0.25 0.007 0.010
C 0.25 0.5 0.010 0.020
c1 45° (typ.)
D 4.8 5.0 0.189 0.197
E 5.8 6.2 0.228 0.244
e 1.27 0.050
e3 3.81 0.150
F 3.8 4.0 0.150 0.157
L 0.4 1.27 0.016 0.050
M 0.6 0.024
S 8° (max.)
b
e3
A
a2
s
L
C
E
c1
a3
b1
a1
DM
85
14
F

Products related to this Datasheet

IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 2 CIRCUIT 8SO