TL062 Datasheet by STMicroelectronics

View All Related Products | Download PDF Datasheet
£7 TL062, TL062A, T Low-power JFET dual operational a Features I Very low power consumption: 200 uA Wide commonrmode (up to VCC”) and differential voltage ranges Low input bias and offset currents Output shortcrrcuit protection High input impedance JFET input stage Internal frequency compensation Latch up tree operation High slew rate: 3.5 V/ps Description The TL062, TL062A and TL062B devices are highrspeed JFET input single operational ampliliers. Each of these JFET input operational ampliliers incorporates well matched, highrvoltage JFET and bipolar transistors in a monolithic integrated circuit. The devices leature high slew rates, low input bias and oflset currents, and a low offset voltage temperature coefficient. Damsheet 7p W N DIP8 (plastic package) $V 80-!) (plastic micropackage |_l|_l|_l|_l |_l|_l|_l|_l September 2012 Doc ID 2294 Rev A Thls us Information on a produd m run productlon
This is information on a product in full production.
September 2012 Doc ID 2294 Rev 4 1/15
15
TL062, TL062A, TL062B
Low-power JFET dual operational amplifiers
Datasheet production data
Features
Very low power consumption: 200 µA
Wide common-mode (up to VCC+) and
differential voltage ranges
Low input bias and offset currents
Output short-circuit protection
High input impedance JFET input stage
Internal frequency compensation
Latch up free operation
High slew rate: 3.5 V/µs
Description
The TL062, TL062A and TL062B devices are
high-speed JFET input single operational
amplifiers. Each of these JFET input operational
amplifiers incorporates well matched,
high-voltage JFET and bipolar transistors in
a monolithic integrated circuit.
The devices feature high slew rates, low input
bias and offset currents, and a low offset voltage
temperature coefficient.
N
DIP8
(plastic package)
D
SO-8
(plastic micropackage)
1
2
36
7
8
-
+-
+
45
1 - Output 1
2 - Inverting input 1
3 - Non-inverting input 1
4 - VCC-
5 - Non-inverting input 2
6 - Inverting input 2
7 - Output 2
8 - VCC+
Pin connections
(top view)
www.st.com
@ a + VCC a C [EENWWH‘HQ Inverlmg ‘an 649 cm” 1/2 TLosz 27052 if; \ \x‘ 4 2 k“ t‘ Vcc' 2/15 Doc ID 2294 Rev A
Schematic diagram TL062, TL062A, TL062B
2/15 Doc ID 2294 Rev 4
1 Schematic diagram
Figure 1. Schematic diagram
TL062, TL062A, TL062B Absolute maximum ratings and operating conditions
Doc ID 2294 Rev 4 3/15
2 Absolute maximum ratings and operating conditions
Table 1. Absolute maximum ratings
Symbol Parameter Value Unit
VCC Supply voltage(1)
1. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the
supply voltages where the zero reference level is the midpoint between VCC+ and VCC-.
±18V
ViInput voltage(2)
2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts,
whichever is less.
±15 V
Vid Differential input voltage(3)
3. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
±30 V
Ptot Power dissipation 680mW
Output short-circuit duration(4)
4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be
limited to ensure that the dissipation rating is not exceeded.
Infinite
Tstg Storage temperature range °C
Rthja
Thermal resistance junction-to-ambient(5),(6)
SO-8
DIP8
5. Short-circuits can cause excessive heating and destructive dissipation.
6. Rth are typical values.
125
85
°C/W
Rthjc
Thermal resistance junction-to-case(5),(6)
SO-8
DIP8
40
41
°C/W
ESD
HBM: human body model(7)
7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for
all couples of pin combinations with other pins floating.
900 V
MM: machine model(8)
8. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin
combinations with other pins floating.
150 V
CDM: charged device model(9)
9. Charged device model: all pins plus package are charged together to the specified voltage and then
discharged directly to ground.
1.5 kV
Table 2. Operating conditions
Symbol Parameter TL062I, AI, BI TL062C, AC, BC Unit
VCC Supply voltage range 6 to 36 V
Toper Operating free air temperature range -40 to +105 0 to +70 °C
Electrical characteristics TL062, TL062A, TL062B
4/15 Doc ID 2294 Rev 4
3 Electrical characteristics
Table 3. VCC = ±15 V, Tamb = +25 °C (unless otherwise specified)
Symbol Parameter
TL062I TL062C
Unit
Min. Typ. Max. Min. Typ. Max.
Vio
Input offset voltage (RS = 50 Ω)
Tamb = +25 °C
Tmin Tamb Tmax
36
9
315
20
mV
DVio
Temperature coefficient of input offset voltage
(RS = 50 Ω)10 10 μV/°C
Iio
Input offset current(1)
Tamb = +25 °C
Tmin Tamb Tmax
5 100
10
5 200
5
pA
nA
Iib
Input bias current(1)
Tamb = +25 °C
Tmin Tamb Tmax
30 200
20
30 400
10
pA
nA
Vicm Input common mode voltage range ±11.5 +15
-12 ±11.5 +15
-12 V
Vopp
Output voltage swing (RL = 10 kΩ)
Tamb = +25 °C
Tmin Tamb Tmax
20
20
27 20
20
27 V
Avd
Large signal voltage gain
RL = 10 kΩ, Vo = ±10 V,
Tamb = +25 °C
Tmin Tamb Tmax
4
4
63
3
6V/mV
GBP Gain bandwidth product
Tamb = +25 °C, RL =10 kΩ, CL = 100 pF 11MHz
RiInput resistance 1012 1012 Ω
CMR Common mode rejection ratio
RS = 50 Ω80867076dB
SVR Supply voltage rejection ratio
RS = 50 Ω8095 7095 dB
ICC
Supply current, no load
Tamb = +25 °C, no load, no signal 200 250 200 250 μA
Vo1/Vo2
Channel separation
Av = 100, Tamb = 25 °C 120 120 dB
PD
Total power consumption
Tamb = +25 °C, no load, no signal 6 7.5 6 7.5 mW
SR Slew rate
Vi = 10 V, RL = 10 kΩ, CL= 100 pF, Av = 1 1.5 3.5 1.5 3.5 V/μs
Tamb
TL062, TL062A, TL062B Electrical characteristics
Doc ID 2294 Rev 4 5/15
tr
Rise time
Vi = 20 mV, RL = 10 kΩ,
CL = 100 pF, Av = 1
0.2 0.2 μs
Kov
Overshoot factor (see Figure 15)
Vi = 20 mV, RL = 10 kΩ, CL = 100 pF, Av= 1 10 10 %
en
Equivalent input noise voltage
RS = 100 Ω, f = 1 kHz 42 42
1. The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature
sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature
as possible.
Table 3. VCC = ±15 V, Tamb = +25 °C (unless otherwise specified) (continued)
Symbol Parameter
TL062I TL062C
Unit
Min. Typ. Max. Min. Typ. Max.
nV
Hz
------------
Table 4. VCC = ±15 V, Tamb = +25 °C (unless otherwise specified)
Symbol Parameter
TL062AC, AI TL062BC, BI
Unit
Min. Typ. Max. Min. Typ. Max.
Vio
Input offset voltage (RS = 50 Ω)
Tamb = +25 °C
Tmin Tamb Tmax
33
7.5
23
5
mV
DVio
Temperature coefficient of input offset voltage
(RS= 50 Ω)10 10 µV/°C
Iio
Input offset current(1)
Tamb = +25 °C
Tmin Tamb Tmax
5100
3
5 100
3
pA
nA
Iib
Input bias current(1)
Tamb = +25 °C
Tmin Tamb Tmax
30 200
7
30 200
7
nA
Vicm Input common mode voltage range ±11.5 +15
-12
±11.5 +15
-12
Vopp
Output voltage swing (RL = 10 kΩ)
Tamb = +25 °C
Tmin Tamb Tmax
20
20
27 20
20
27 V
Avd
Large signal voltage gain
RL = 10 kΩ, Vo = ±10 V,
Tamb = +25 °C
Tmin Tamb Tmax
4
4
64
4
6V/mV
GBP Gain bandwidth product
Tamb = +25 °C, RL =10 kΩ, CL = 100 pF 11MHz
RiInput resistance 1012 1012 Ω
CMR Common mode rejection ratio
RS = 50 Ω80868086dB
SVR Supply voltage rejection ratio
RS = 50 Ω8095 8095 dB
Electrical characteristics TL062, TL062A, TL062B
6/15 Doc ID 2294 Rev 4
ICC
Supply current, no load
Tamb = +25 °C, no load, no signal 200 250 200 250 µA
Vo1/Vo2
Channel separation
Av = 100, Tamb = +25 °C 120 120
PD
Total power consumption
Tamb = +25 °C, no load, no signal 67.5 67.5mW
SR Slew rate
Vi = 10 V, RL = 10 kΩ, CL = 100 pF, Av = 1 1.5 3.5 1.5 3.5 V/μs
tr
Rise time
Vi = 20 mV, RL = 10 kΩ, CL = 100 pF, Av = 1 0.2 0.2 μs
Kov
Overshoot factor (see Figure 15)
Vi = 20 mV, RL = 10 kΩ, CL = 100 pF, Av = 1 10 10 %
en
Equivalent input noise voltage
RS = 100 Ω, f = 1 kHz 42 42
1. The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature
sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature
as possible.
Table 4. VCC = ±15 V, Tamb = +25 °C (unless otherwise specified) (continued)
Symbol Parameter
TL062AC, AI TL062BC, BI
Unit
Min. Typ. Max. Min. Typ. Max.
nV
Hz
------------
30 257 20 t5 V0 ,75 30 25 20 15 10 5 0 mo 200 30 25 5 0 1k m: 20 :rtmpmx ‘5 4H HH ‘0 W
TL062, TL062A, TL062B Electrical characteristics
Doc ID 2294 Rev 4 7/15
Figure 2. Maximum peak-to-peak output
voltage versus supply voltage
Figure 3. Maximum peak-to-peak output
voltage versus free air temperature
R
L
= 10 kΩ
Tamb = + 25 °C
Maximum peak-to-peak output
voltage (V)
Suppl
y
volta
g
e (V)
Maximum peak-to-peak output
voltage (V)
Free air temperature (°C)
V
CC
= +/- 15 V
R
L
= 10 kΩ
Figure 4. Maximum peak-to-peak output
voltage versus load resistance
Figure 5. Maximum peak-to-peak output
voltage versus frequency
T
amb
= + 25 °C
V
CC
= +/- 15 V
Maximum peak-to-peak output
voltage (V)
Load resistance (kΩ)
Maximum peak-to-peak output
voltage (V)
Frequency (Hz)
VCC = +/- 15 V
VCC = +/- 12 V
VCC = +/- 5 V
VCC = +/- 2 V
RL = 10 kΩ
Tamb = + 25 °C
Figure 6. Differential voltage amplification
versus free air temperature
Figure 7. Large signal differential voltage
amplification and phase shift
versus frequency
10
2
4
7
-75 -50 -25 02550 75 100 125
1
V
CC
= +/- 15 V
R
L
= 10 kΩ
Differential voltage
amplification (V/mV)
Free air temperature (°C)
10 100 1k 10k 100k 1M 10M
6
10
5
10
4
10
3
10
2
10
1
10
1
0
45
90
135
180
VCC = +/- 5 V to +/- 15 V
RL = 2 kΩ
Differential voltage
amplification (V/V)
Frequency (Hz)
Tamb = + 25 °C
Phase shift
(right scale)
Differential
voltage
amplification
(left scale)
Electrical characteristics TL062, TL062A, TL062B
8/15 Doc ID 2294 Rev 4
Figure 8. Supply current per amplifier versus
supply voltage
Figure 9. Supply current per amplifier versus
free air temperature
250
200
150
100
50
0
02 6
4810 12 14 16
T
amb
= + 25 °C
No signal
no load
Supply current (μA)
Supply volta
g
e (+/- V)
250
200
150
100
50
0
-75
-50
0
-25
25 50 75 100
125
V
CC
= +/- 15 V
No signal
no load
Supply current (μA)
Free air temperature (°C)
Figure 10. Total power dissipated versus free
air temperature
Figure 11. Common-mode rejection ratio
versus free air temperature
10
5
0
-50 -25 0 25 50 75 100 125
-75
15
20
25
30
V
CC
= +/- 15 V
No signal
no load
Free air temperature (°C)
To t al power dissipated
(mW)
83
82
81
-50 -25 0 25 50 75 100 125
-75
84
85
86
87
VCC = +/- 15 V
Free air temperature (°C)
Common mode rejection ratio
(dB)
RL = 10 kΩ
Figure 12. Normalized unity gain bandwidth
slew rate and phase shift versus
temperature
Figure 13. Input bias current versus free air
temperature
0.9
0.8
0.7
-50 -25
0255075100
125-75
1
1.1
1.2
1.3
0.99
0.98
0.97
1
1.01
1.02
1.03
VCC = +/- 15 V
Free air temperature (°C)
Normalized unity-gain bandwidth
and slew rate
RL = 10 kΩ
Normalized phase shift
f = B1 for phase shift
Unity-gain bandwidth
(left scale)
Phase shift
(right scale)
Slew rate
(left scale)
100
10
1
0.1
0.01
-50 -25
0255075100125
Free air temperature (°C)
Input bias current (nA)
V
CC
= +/- 15 V
100K |_. ‘7] Doc ID 2294 Rev 4
TL062, TL062A, TL062B Electrical characteristics
Doc ID 2294 Rev 4 9/15
Parameter measurement information
Figure 14. Voltage follower large signal pulse
response
Figure 15. Output voltage versus elapsed time
Figure 16. Equivalent input noise voltage versus frequency
6
4
2
0
-2
-4
0246810
-6
V
CC
= +/- 15 V
Time (μs)
Input and output voltages (V)
R
L
= 10 kΩ
T
amb
= + 25 °C
C
L
= 100 pF
Input
Output
28
24
20
16
12
8
4
0
-4
0
0.2 0.4 0.6 0.8
112
14
V
CC
= +/- 15 V
Time (μs)
Output voltage (mV)
R
L
= 10 kΩ
T
amb
= + 25 °C
Overshoot
t
r
10%
90%
70
60
50
40
30
20
10
0
10
40 100
400
1k 4k 10k
40k 100
k
80
90
100
V
CC
= +/- 15 V
R
S
= 100 Ω
T
amb
= + 25 °C
Frequency (Hz)
Equivalent input noise
voltage (nV/VHz)
Figure 17. Voltage follower Figure 18. Gain of 10 inverting amplifier
-
e
I
TL062
eo
1/2
RL = 10 kΩ
CL = 100 pF
-
e
I
TL062
R
L
1/2
eo
10 kΩ
C
L
= 100 pF
1 kΩ
TL062, TLOSZA, TLOSZB applications ralure oscillator 1/2 ‘ o TL062 0 1. These reswsmr Va‘ues may be adjusted tor a symmemca‘ output. 10/15 Doc ID 2294 Rev 4 (7]
Typical applications TL062, TL062A, TL062B
10/15 Doc ID 2294 Rev 4
4 Typical applications
Figure 19. 100 kHz quadrature oscillator
1. These resistor values may be adjusted for a symmetrical output.
-
-
TL062
1/2
TL062
1/2
18 pF
88.4 k
Ω
18 pF
88.4 k
Ω
88.4 k
Ω
18 pF
1N 4148
1N 4148 18 k
Ω
-15 V
1 k
Ω
1 k
Ω
18 k
Ω
+15 V
6 cos
ω
t
6 sin
ω
t
(1)
(1)
TL062, TL062A, TL062B Package information
Doc ID 2294 Rev 4 11/15
5 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com. ECOPACK
is an ST trademark.
DZ 0 1 w” a I AZA :\ ,, \\ m F “N" ‘1‘ b JLL C EA 55 D g 5 rhrhrfii EV :[ ? HWWH I GAUGE PIANE 058
Package information TL062, TL062A, TL062B
12/15 Doc ID 2294 Rev 4
5.1 DIP8 package information
Figure 20. DIP8 package outline
Table 5. DIP8 package mechanical data
Note: Dimensions "D" and "E1" do not include mold flash, protrusions or gate burrs. Mold flash,
protrusions or gate burrs shall not exceed 0.25 mm in total (both sides). Datum plane "H"
coincides with the bottom of the lead, where the lead exits the body.
Symbol
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 5.33 0.210
A1 0.380.015
A2 2.92 3.30 4.95 0.115 0.130 0.195
b 0.36 0.46 0.56 0.014 0.0180.022
b2 1.14 1.52 1.780.045 0.060 0.070
c 0.20 0.25 0.36 0.0080.010 0.014
D 9.02 9.27 10.16 0.355 0.365 0.400
E7.627.878.26 0.300 0.310 0.325
E1 6.10 6.35 7.11 0.240 0.250 0.280
e 2.54 0.100
eA 7.62 0.300
eB 10.92 0.430
L 2.92 3.30 3.81 0.115 0.130 0.150
mum “1 1* Sxfi 4L: M c SEATING D “‘ PMNE 0,15 m GAGE PLANE [3 m H [37' T gfi § U E UL 7 a?
TL062, TL062A, TL062B Package information
Doc ID 2294 Rev 4 13/15
5.2 SO-8 package information
Figure 21. SO-8 package outline
Table 6. SO-8 package mechanical data
Symbol
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 1.75 0.069
A1 0.10 0.25 0.004 0.010
A2 1.25 0.049
b0.280.480.011 0.019
c 0.17 0.23 0.007 0.010
D4.80 4.90 5.00 0.189 0.193 0.197
E5.80 6.00 6.20 0.2280.236 0.244
E1 3.80 3.90 4.00 0.150 0.154 0.157
e 1.27 0.050
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
L1 1.04 0.040
k0 8°1° 8°
ccc 0.10 0.004
Ordering information TL062, TL062A, TL062B
14/15 Doc ID 2294 Rev 4
6 Ordering information
7 Revision history
Table 7. Order codes
Part number Temperature
range Package Packaging Marking
TL062IN
TL062AIN
TL062BIN
-40 °C, +105 °C
DIP8Tub e
TL062IN
TL062AIN
TL062BIN
TL062ID/IDT
TL062AID/AIDT
TL062BID/BIDT
SO-8Tu be or
tape and reel
062I
062AI
062BI
TL062CN
TL062ACN
TL062BCN 0 °C, +70 °C
DIP8Tub e
TL062CN
TL062ACN
TL062BCN
TL062CD/CDT
TL062ACD/ACDT
TL062BCD/BCDT
SO-8Tu be or
tape and reel
062C
062AC
062BC
Table 8. Document revision history
Date Revision Changes
28-Mar-2001 1 Initial release.
27-Jul-2007 2
Added values for Rthja and Rthjc in Table 1: Absolute maximum
ratings.
Added Table 2: Operating conditions.
Updated format.
15-Mar-2010 3
Updated document format.
Added TL062A and TL062B in title on cover page.
Updated package information in Chapter 5.
21-Sep-2012 4
Removed TL062M, AM, BM /TL062I, AI, BI / TL062C, AC, BC part
numbers and temperature ranges from Ta bl e 1 . and TL062M, AM,
BM from Ta ble 2.
Removed TL062M, updated min. “Input common mode voltage
range” for TL062C device in Ta bl e 3 .
Removed TL062AM and TL062BM devices, updated max. ”Input
offset voltage - Tambfor TL062AC, AI devices in Table 4.
Removed TL062MN, TL062AMN, TL062BMN, TL062MD/MDT,
TL062AMD/AMDT, TL062BMD/BMDT part numbers from Ta bl e 7 .
Minor corrections throughout document.
TL062, TL062A, TL062B
Doc ID 2294 Rev 4 15/15
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at an
y
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

Products related to this Datasheet

IC OPAMP JFET 2 CIRCUIT 8SO
IC OPAMP JFET 2 CIRCUIT 8SO
IC OPAMP JFET 2 CIRCUIT 8SO
IC OPAMP JFET 2 CIRCUIT 8SO
IC OPAMP JFET 2 CIRCUIT 8SO
IC OPAMP JFET 2 CIRCUIT 8SO
IC OPAMP JFET 2 CIRCUIT 8SO
IC OPAMP JFET 2 CIRCUIT 8SO
IC OPAMP JFET 2 CIRCUIT 8SO
IC OPAMP JFET 2 CIRCUIT 8SO
IC OPAMP JFET 2 CIRCUIT 8DIP
IC OPAMP JFET 2 CIRCUIT 8SO
IC OPAMP JFET 2 CIRCUIT 8DIP
IC OPAMP JFET 2 CIRCUIT 8SO
IC OPAMP JFET 2 CIRCUIT 8DIP
IC OPAMP JFET 2 CIRCUIT 8SO
IC OPAMP JFET 2 CIRCUIT 8SO
IC OPAMP JFET 2 CIRCUIT 8SO
IC OPAMP JFET 2 CIRCUIT 8SO