IRF(B,S,SL)3306PbF Datasheet by Infineon Technologies

View All Related Products | Download PDF Datasheet
International IEBR RecTilier Voss 60V RDS(on) tVP- 3.3m!) 4.2m!) (D a \ l G D S Gale Dram Source lRFSLSEOSFbF T0252 Tube 50 IRFSLsaosPnF Tube 50 IRFsasostF Tape and Reel Lek soo lRFSSEOGTRLPbF Tape and Reel Rxghl soo lRFSSSOGTRRPbF Absolute Maximum Rali s Avalanche Characteristics AS mm m an) ‘m m Thermal Resistance m «)9 ectmer
HEXFET® Power MOSFET
Benefits
lImproved Gate, Avalanche and Dynamic dV/dt
Ruggedness
lFully Characterized Capacitance and Avalanche
SOA
lEnhanced body diode dV/dt and dI/dt Capability
l Lead-Free
lRoHS Compliant, Halogen-Free
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
D2Pak
IRFS3306PbF
TO-220AB
IRFB3306PbF
TO-262
IRFSL3306PbF
S
D
G
S
D
G
S
D
G
DDD
GDS
Gate Drain Source
S
D
G
V
DSS
60V
R
DS(on)
typ.
3.3m
max. 4.2m
ID (Silicon Limited) 160A
ID (Package Limited) 120A
IRFB3306PbF
IRFS3306PbF
IRFSL3306PbF
1 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback April 24, 2014
Absolute Maximum Ratings
Symbol Parameter Units
I
D
@ T
C
= 25°C Continuous Drain Current, V
@ 10V (Silicon Limited)
I
D
@ T
C
= 100°C Continuous Drain Current, V
@ 10V (Silicon Limited)
I
D
@ T
C
= 25°C Continuous Drain Current, V
@ 10V (Wire Bond Limited)
I
Pulsed Drain Current
P
D
@T
C
= 25°C Maximum Power Dissipation W
Linear Derating Factor W/°C
V
Gate-to-Source Voltage V
dv/dt Peak Diode Rec overy
V/ns
T
J
Operating Junction and
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
E
AS (Thermally limited)
Single Pulse Avalanche Energy mJ
I
AR
Avalanche Current A
E
AR
Repetitive Avalanche Energy mJ
Thermal Resistance
Symbol Parameter Typ. Max. Units
R
θ
Junction-to-Case ––– 0.65
R
θ
CS
Case-to-Sink, Flat Greased Surface , TO-220 0.50 –––
R
θ
Junction-to-Ambient, TO-220 ––– 62
R
θ
Junction-to-Ambient (PCB Mount) , D
2
Pak ––– 40
A
°C
°C/W
300
184
See Fig. 14, 15, 22a, 22b,
230
14
-55 to + 175
± 20
1.5
10lb in (1.1N m)
Max.
160
110
620
120
Form Quantity
IRFB3306PbF TO-220 Tube 50 IRFB3306PbF
IRFSL3306PbF
TO-262
Tube
50
IRFSL3306PbF
Tube 50
IRFS3306PbF
Tape and Reel Left 800 IRFS3306TRLPbF
Tape and Reel Right 800 IRFS3306TRRPbF
Base Part Number Package Type Standard Pack Orderable Part Number
IRFS3306PbF D2Pak
Efleclive Oulpul Capacilance (Energy Flamed) (6) di/d‘ : 100A/p5 (S) - ec1|f|er
2 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
Notes:
Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 120A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements.
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by TJmax, starting TJ = 25°C, L = 0.04mH
RG = 25Ω, IAS = 96A, VGS =10V. Part not recommended for use
above this value.
S
D
G
ISD 75A, di/dt 1400A/μs, VDD V(BR)DSS, TJ 175°C.
Pulse width 400μs; duty cycle 2%.
Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
Rθ is measured at TJ approximately 90°C
Static @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
V(BR)DSS Drain-to-Source Breakdown Voltage 60 ––– ––– V
ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient ––– 0.07 ––– V/°C
RDS(on) Static Drain-to-Source On-Resistance ––– 3.3 4.2 mΩ
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V
IDSS Drain-to-Source Leakage Current ––– ––– 20 μA
––– ––– 250
IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
RGInternal Gate Resistance ––– 0.7 ––– Ω
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
gfs Forward Transconductance 230 ––– ––– S
QgTotal Gate Charge ––– 85 120 nC
Qgs Gate-to-Source Charge ––– 20 –––
Qgd Gate-to-Drain ("Miller") Charge ––– 26
Qsync Total Gate Charge Sync. (Qg - Qgd)––– 59 –––
td(on) Turn-On Delay Time ––– 15 ––– ns
trRise Time ––– 76 –––
td(off) Turn-Off Delay Time ––– 40 –––
tfFall Time ––– 77 –––
Ciss Input Capacitance ––– 4520 ––– pF
Coss Output Capacitance ––– 500 –––
Crss Reverse Transfer Capacitance ––– 250 –––
Coss eff. (ER)
Effective Output Capacitance (Energy Related)
––– 720 –––
Coss eff. (TR) Effective Output Capacitance (Time Related) ––– 880 –––
Diode Characteristics
Symbol Parameter Min. Typ. Max. Units
ISContinuous Source Current ––– ––– 160 A
(Body Diode)
ISM Pulsed Source Current ––– ––– 620 A
(Body Diode)
VSD Diode Forward Voltage ––– ––– 1.3 V
trr Reverse Recovery Time ––– 31 ns TJ = 25°C VR = 51V,
––– 35 TJ = 125°C IF = 75A
Qrr Reverse Recovery Charge ––– 34 nC TJ = 25°C
di/dt = 100A/μs
––– 45 TJ = 125°C
IRRM Reverse Recovery Current ––– 1.9 ––– A TJ = 25°C
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Conditions
VDS = 50V, ID = 75A
ID = 75A
VGS = 20V
VGS = -20V
MOSFET symbol
showing the
VDS =30V
Conditions
VGS = 10V
VGS = 0V
VDS = 50V
ƒ = 1.0MHz, See Fig. 5
VGS = 0V, VDS = 0V to 48V , See Fig. 11
VGS = 0V, VDS = 0V to 48V
TJ = 25°C, IS = 75A, VGS = 0V
integral reverse
p-n junction diode.
Conditions
VGS = 0V, ID = 250μA
Reference to 25°C, ID = 5mA
VGS = 10V, ID = 75A
VDS = VGS, ID = 150μA
VDS = 60V, VGS = 0V
VDS = 48V, VGS = 0V, TJ = 125°C
ID = 75A
RG = 2.7Ω
VGS = 10V
VDD = 30V
ID = 75A, VDS =0V, VGS = 10V
g sous PUL - www.|rf.com f 2014 International Reamer
3 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature
Fig 2. Typical Output Characteristics
Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage
0.1 110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
ID, Drain-to-Source Current (A)
60μs PULSE WIDTH
Tj = 25°C
4.5V
VGS
TOP 15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
BOTTOM 4.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
ID, Drain-to-Source Current (A)
60μs PULSE WIDTH
Tj = 175°C
4.5V
VGS
TOP 15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
BOTTOM 4.5V
2.0 3.0 4.0 5.0 6.0 7.0 8.0
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current
(Α)
VDS = 25V
60μs PULSE WIDTH
TJ = 25°C
TJ = 175°C
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 75A
VGS = 10V
110 100
VDS, Drain-to-Source Voltage (V)
0
2000
4000
6000
8000
C, Capacitance (pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0 20 40 60 80 100 120 140
QG Total Gate Charge (nC)
0
4
8
12
16
20
VGS, Gate-to-Source Voltage (V)
VDS= 48V
VDS= 30V
VDS= 12V
ID= 75A
_ FERAT‘ON IN TH‘S A Dr P 13A 15A // - emlfler
4 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
Fig 8. Maximum Safe Operating Area
Fig 10. Drain-to-Source Breakdown Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 11. Typical COSS Stored Energy
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
010 20 30 40 50 60
VDS, Drain-to-Source Voltage (V)
0.0
0.5
1.0
1.5
Energy (μJ)
0.1 1 10 100
VDS, Drain-toSource Voltage (V)
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100μsec
DC
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
50
60
70
80
V(BR)DSS , Drain-to-Source Breakdown Voltage
ID = 5mA
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
20
40
60
80
100
120
140
160
180
ID, Drain Current (A)
Limited By Package
25 50 75 100 125 150 175
Starting TJ, Junction Temperature (°C)
0
200
400
600
800
EAS, Single Pulse Avalanche Energy (mJ)
I D
TOP 13A
18A
BOTTOM 96A
‘(1 0.249761 0.00025 \NGLE PULSE 1, Duly Facmr D : H/t2 pu‘sewwdth, tav‘ assummg rrem vs a pulsewxdlh‘ tam
5 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
Thermal Response ( Z
thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 14. Typical Avalanche Current vs.Pulsewidth
Fig 15. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Ri (°C/W)
τι
(sec)
0.249761 0.00028
0.400239 0.005548
τ
J
τ
J
τ
1
τ
1
τ
2
τ
2
R
1
R
1
R
2
R
2
τ
C
C
Ci= τi/Ri
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
40
80
120
160
200
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 96A
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
1
10
100
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
emlfler
6 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage Vs. Temperature
Fig. 19 - Typical Stored Charge vs. dif/dtFig. 18 - Typical Recovery Current vs. dif/dt
Fig. 20 - Typical Stored Charge vs. dif/dt
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
VGS(th) Gate threshold Voltage (V)
ID = 1.0A
ID = 1.0mA
ID = 250μA
ID = 150μA
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / μs)
0
4
8
12
16
IRRM - (A)
IF = 30A
VR = 51V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / μs)
0
4
8
12
16
IRRM - (A)
IF = 45A
VR = 51V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / μs)
0
50
100
150
200
250
300
350
QRR - (nC)
IF = 30A
VR = 51V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / μs)
0
50
100
150
200
250
300
350
QRR - (nC)
IF = 45A
VR = 51V
TJ = 125°C
TJ = 25°C
Pw W? '0'”..—.~—. Q9 Fig - www.irf.com 13“ 2014 Internafional Rectifier mlt Datashe
7 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
Fig 23a. Switching Time Test Circuit Fig 23b. Switching Time Waveforms
VGS
VDS
90%
10%
td(on) td(off)
trtf
VGS
Pulse Width < 1μs
Duty Factor < 0.1%
VDD
VDS
LD
D.U.T
+
-
Fig 22b. Unclamped Inductive Waveforms
Fig 22a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
Ω
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
Inductor Current
D.U.T. VDS
ID
IG
3mA
VGS
.3μF
50KΩ
.2μF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
WVES 7 Musmw; wt mimmc 7, Mmms m «, H mm: [mm/um) \Em w: m :m mm m wur m u ; wmam c n u w w m (M; fU-EH m :HAU ms *m» ac: (wavy w: VHE5E Wiwc um nn H w: mm (mm: nr w: rm mm», t“ m ‘ , n V: Ni \‘EYAL gm camcm‘ wwcx HES wimm 2: uh m mm mm :wmiumimm < n="" u,="" :wmm,="" 5.,="" m="" 157th="" a="" mg="" «um="" um="" wm="" m)="" :wum="" rpejjh'wes="" us="" 4="" [3="" '17="" ’hlne="" n="" m»="" u="" m="" m="" mm="" a?="" [my="" w="" mm="" mm="" mm="" 2m="" m="" .0="" z.="" n="" .4="" w:="" a="" m="" mm:="" mm:="" m="" «cm="" «a="" 3="" u,="" 'an="" awmms="" “m“="" nmmm="" nches="" wu="" \lx="" vw="" \ux="" veve‘,="" «j:="" ul:="" an="" “n="" m="" mt="" mm="" mm="" emifier="">
8 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
TO-220AB packages are not recommended for Surface Mount Application.
TO-220AB Part Marking Information
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
IRFB3306 IRFB3306
PYWW?
LC LC
PART NUMBER
DATE CODE
P = LEAD-FREE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
? = ASSEMBLY SITE CODE
INTERNATIONAL
RECTIFIER LOGO
ASSEMBLY
LOT CODE
OR
YWWP
LC LC
PART NUMBER
DATE CODE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
P = LEAD-FREE
INTERNATIONAL
RECTIFIER LOGO
ASSEMBLY
LOT CODE
L \LU- EYE IHE E 77: L/ v «YLE7 E7‘E‘\7 \ \LU‘EYE [r HE] E - ~HEE‘E FL7H LFL7HH7LL TE‘EE *[ ]E\EYHEE\E\-7EE7E rrYHE ,, nun rmsz .1 H r T n \w “5‘ [L E \E\'\,\7 7E» 7EET7L L‘ 4,“ r_ E ETE WE 4-4 L7‘EH rw \E\ ‘H 1UE,‘F ‘1 EE mEr7 LE7 ‘E r x E 7 7 E T \E E E \E 7 rm E , , I H E r ‘ 7 7TE 7 7TE , 4. , ‘7 LLE T -7 E -7 E mE M 2014 Internafional Rectifier
9 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
D2Pak Part Marking Information
D2Pak Package Outline (Dimensions are shown in millimeters (inches))
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
FS3306 FS3306
PYWW? YWWP
ASSEMBLY
LOT CODE
INTERNATIONAL
RECTIFIER LOGO
DATE CODE
P = LEAD-FREE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
? = ASSEMBLY SITE CODE
LC LC
PART NUMBER
OR ASSEMBLY
LOT CODE
INTERNATIONAL
RECTIFIER LOGO
DATE CODE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
P = LEAD-FREE
LC LC
PART NUMBER
‘ ‘ p ‘ ‘ L w m ‘ n: w a L ‘ , w , , ‘ ‘ , , , ‘ ‘ ‘ ‘ ‘ z ‘ ‘ a 7 ‘ ‘ L , ‘ L 7 7 ‘ L ‘ h emifier
10 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
TO-262 Part Marking Information
TO-262 Package Outline (Dimensions are shown in millimeters (inches))
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
FSL3306
PYWW?
FSL3306
YWWP
ASSEMBLY
LOT CODE
INTERNATIONAL
RECTIFIER LOGO
DATE CODE
P = LEAD-FREE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
? = ASSEMBLY SITE CODE
PART NUMBER
OR
DATE CODE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
P = LEAD-FREE
LC LC
ASSEMBLY
LOT CODE
INTERNATIONAL
RECTIFIER LOGO
PART NUMBER
LC LC
IflR ul:
11 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
D2Pak Tape & Reel Information
3
4
4
TRR
FEED DIRECTION
1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
TRL
FEED DIRECTION
10.90 (.429)
10.70 (.421)
16.10 (.634)
15.90 (.626)
1.75 (.069)
1.25 (.049)
11.60 (.457)
11.40 (.449) 15.42 (.609)
15.22 (.601)
4.72 (.136)
4.52 (.178)
24.30 (.957)
23.90 (.941)
0.368 (.0145)
0.342 (.0135)
1.60 (.063)
1.50 (.059)
13.50 (.532)
12.80 (.504)
330.00
(14.173)
MAX.
27.40 (1.079)
23.90 (.941)
60.00 (2.362)
MIN.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
T Qualification standards can be found at International Rectifiers web site: International IEBR Rectifier ectifier
12 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback April 24, 2014
IRFB3306PbF/IRFS3306PbF/IRFSL3306PbF
TO-220 N/A
D2Pak
TO-262
RoHS compliant
Qualification information
Industrial
(per JEDEC JESD47F
††
guidelines)
Yes
Qualification level
Moisture Sensitivity Level
MS L 1
Qualification standards can be found at International Rectifiers web site: http://www.irf.com/product-info/reliability/
 Applicable version of JEDEC standard at the time of product release.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
Revision History
Date Comment
Updated data sheet with new IR corporate template.
Updated package outline & part marking on page 8, 9 & 10.
Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1.
4/24/2014

Products related to this Datasheet

MOSFET N-CH 60V 120A TO-220AB
MOSFET N-CH 60V 120A D2PAK
MOSFET N-CH 60V 120A TO-262
MOSFET N-CH 60V 120A D2PAK
MOSFET N-CH 60V 120A D2PAK
MOSFET N-CH 60V 120A D2PAK