MCP6231, 2, 4 Datasheet by Microchip Technology

View All Related Products | Download PDF Datasheet
MCP6231I1R/1UI2I4 1| E El El % E E I? E E El I: E E ‘MICROCHIP
© 2009 Microchip Technology Inc. DS21881E-page 1
MCP6231/1R/1U/2/4
Features
Gain Bandwidth Product: 300 kHz (typical)
Supply Current: IQ = 20 µA (typical)
Supply Voltage: 1.8V to 6.0V
Rail-to-Rail Input/Output
Extended Temperature Range: -40°C to +125°C
Available in 5-Pin SC70 and SOT-23 packages
Applications
• Automotive
Portable Equipment
Transimpedance amplifiers
Analog Filters
Notebooks and PDAs
Battery-Powered Systems
Design Aids
SPICE Macro Models
• FilterLab® Software
Mindi™ Circuit Designer & Simulator
Microchip Advanced Part Selector (MAPS)
Analog Demonstration and Evaluation Boards
Application Notes
Typical Application
Description
The Microchip Technology Inc. MCP6231/1R/1U/2/4
operational amplifiers (op amps) provide wide
bandwidth for the quiescent current. The MCP6231/1R/
1U/2/4 family has a 300 kHz gain bandwidth product
and 65°C (typical) phase margin. This family operates
from a single supply voltage as low as 1.8V, while
drawing 20 µA (typical) quiescent current. In addition,
the MCP6231/1R/1U/2/4 family supports rail-to-rail
input and output swing, with a common mode input
voltage range of VDD +300mV to V
SS –300mV.
These op amps are designed in one of Microchip’s
advanced CMOS processes.
Package Types
MCP6231 VOUT
VIN2
+
VIN1
RG2
RG1
RF
RZ
VDD
RX
RY
Summing Amplifier Circuit
4
MCP6231
1
2
3
+
5VDD
VIN
VOUT
VSS
VIN+
SOT-23-5
4
1
2
3
+
5VDD
VOUT
VSS
MCP6231R
SOT-23-5
4
1
2
3
+
5VSS
VIN
VOUT
VDD
VIN+
MCP6231U
SC70-5, SOT-23-5
4
1
2
3
+
5VDD
VOUT
VIN+
VSS
VIN
VIN+
VIN
MCP6231
VSS
VDD
VOUT
1
2
3
4
8
7
6
5
+
NC
NC
NC
MSOP, PDIP, SOIC
MCP6232
MSOP, PDIP, SOIC
1
2
3
4
8
7
6
5
-
+-
+
VINA_
VINA+
VSS
VOUTA
VOUTB
VDD
VINB_
VINB+
MCP6234
VINA+
VINA
VSS
1
2
3
4
14
13
12
11
-
VOUTA
+-
+
VDD
VOUTD
VIND
VIND+
10
9
8
5
6
7
VOUTB
VINB
VINB+VINC+
VINC
VOUTC
+
--
+
PDIP, SOIC, TSSOP
MCP6231
DFN *
MCP6232
VINA+
VINA_
VSS
VOUTB
VINB_
1
2
3
4
8
7
6
5VINB+
VOUTA
EP
9
VDD
VIN+
VIN
VSS
VDD
VOUT
1
2
3
4
8
7
6
5NC
NC
EP
9
NC
* Includes Exposed Thermal Pad (EP); see Table 3-1.
2x3 TDFN *
20 µA, 300 kHz Rail-to-Rail Op Amp
MCP6231/1R/1U/2/4
DS21881E-page 2 © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. DS21881E-page 3
MCP6231/1R/1U/2/4
1.0 ELECTRICAL
CHARACTERISTICS
Absolute Maximum Ratings †
VDD –V
SS ........................................................................7.0V
Current at Analog Input Pins (VIN+, VIN–).....................±2 mA
Analog Inputs (VIN+, VIN–) †† ........ VSS –1.0VtoV
DD +1.0V
All Other Inputs and Outputs ......... VSS – 0.3V to VDD +0.3V
Difference Input Voltage ...................................... |VDD –V
SS|
Output Short Circuit Current ................................Continuous
Current at Output and Supply Pins ............................±30 mA
Storage Temperature ...................................–65°C to +150°C
Maximum Junction Temperature (TJ)..........................+150°C
ESD Protection On All Pins (HBM; MM) .............. ≥ 4 kV; 300V
† Notice: Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of
the device at those or any other conditions above those
indicated in the operational listings of this specification is not
implied. Exposure to maximum rating conditions for extended
periods may affect device reliability.
†† See Section 4.1.2 “Input Voltage and Current Limits”.
DC ELECTRICAL CHARACTERISTICS
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2,
RL = 100 kΩ to VDD/2 and VOUT VDD/2.
Parameters Sym Min Typ Max Units Conditions
Input Offset
Input Offset Voltage VOS -5.0 +5.0 mV VCM = VSS
Extended Temperature VOS -7.0 +7.0 mV TA = -40°C to +125°C,
VCM = VSS (Note 1)
Input Offset Drift with Temperature ΔVOS/ΔTA—±3.0µV/°CT
A= -40°C to +125°C,
VCM = VSS
Power Supply Rejection Ratio PSRR 83 dB VCM = VSS
Input Bias Current and Impedance
Input Bias Current: IB ±1.0 — pA
At Temperature IB—20pAT
A = +85°C
At Temperature IB 1100 pA TA = +125°C
Input Offset Current IOS ±1.0 — pA
Common Mode Input Impedance ZCM —10
13||6 — Ω||pF
Differential Input Impedance ZDIFF —10
13||3 — Ω||pF
Common Mode
Common Mode Input Range VCMR VSS 0.3 — VDD + 0.3 V
Common Mode Rejection Ratio CMRR 61 75 dB VCM = -0.3V to 5.3V,
VDD = 5V
Open-Loop Gain
DC Open-Loop Gain (large signal) AOL 90 110 dB VOUT = 0.3V to VDD – 0.3V,
VCM =V
SS
Output
Maximum Output Voltage Swing VOL, VOH VSS + 35 — VDD – 35 mV RL =10 kΩ, 0.5V Input
Overdrive
Output Short-Circuit Current ISC —±6mAV
DD = 1.8V
ISC —±23mAV
DD = 5.5V
Power Supply
Supply Voltage VDD 1.8 6.0 V
Quiescent Current per Amplifier IQ10 20 30 µA IO = 0, VCM = VDD – 0.5V
Note 1: The SC70 package is only tested at +25°C.
2: All parts with date codes February 2007 and later have been screened to ensure operation at VDD = 6.0V. However, the
other minimum and maximum specifications are measured at 1.8V and 5.5V
MCP6231/1R/1U/2/4
DS21881E-page 4 © 2009 Microchip Technology Inc.
AC ELECTRICAL CHARACTERISTICS
TEMPERATURE CHARACTERISTICS
1.1 Test Circuits
The test circuits used for the DC and AC tests are
shown in Figure 1-1 and Figure 1-1. The bypass
capacitors are laid out according to the rules discussed
in Section 4.6 “PCB Surface Leakage”.
FIGURE 1-1: AC and DC Test Circuit for
Most Non-Inverting Gain Conditions.
FIGURE 1-2: AC and DC Test Circuit for
Most Inverting Gain Conditions.
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8 to 5.5V, VSS = GND, VCM = VDD/2,
VOUT VDD/2, RL = 100 kΩ to VDD/2 and CL = 60 pF.
Parameters Sym Min Typ Max Units Conditions
AC Response
Gain Bandwidth Product GBWP 300 kHz
Phase Margin PM 65 ° G = +1 V/V
Slew Rate SR 0.15 V/µs
Noise
Input Noise Voltage Eni —6.0µV
P-P f = 0.1 Hz to 10 Hz
Input Noise Voltage Density eni —52nV/Hz f = 1 kHz
Input Noise Current Density ini —0.6fA/Hz f = 1 kHz
Electrical Characteristics: Unless otherwise indicated, VDD = +1.8V to +5.5V and VSS = GND.
Parameters Sym Min Typ Max Units Conditions
Temperature Ranges
Extended Temperature Range TA-40 +125 °C
Operating Temperature Range TA-40 +125 °C Note
Storage Temperature Range TA-65 +150 °C
Thermal Package Resistances
Thermal Resistance, 5L-SC70 θJA 331 °C/W
Thermal Resistance, 5L-SOT-23 θJA 256 °C/W
Thermal Resistance, 8L-DFN θJA 84.5 — °C/W
Thermal Resistance, 8L-MSOP θJA —206°C/W
Thermal Resistance, 8L-TDFN θJA —41°C/W
Thermal Resistance, 8L-PDIP θJA —85°C/W
Thermal Resistance, 8L-SOIC θJA —163°C/W
Thermal Resistance, 14L-PDIP θJA —70°C/W
Thermal Resistance, 14L-SOIC θJA —120°C/W
Thermal Resistance, 14L-TSSOP θJA —100°C/W
Note: The internal Junction Temperature (TJ) must not exceed the Absolute Maximum specification of +150°C.
VDD
MCP623X
RGRF
RNVOUT
VIN
VDD/2
F
CLRL
VL
0.1 µF
VDD
MCP623X
RGRF
RNVOUT
VDD/2
VIN
F
CLRL
VL
0.1 µF
© 2009 Microchip Technology Inc. DS21881E-page 5
MCP6231/1R/1U/2/4
2.0 TYPICAL PERFORMANCE CURVES
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,
RL = 100 kΩ to VDD/2 and CL = 60 pF.
FIGURE 2-1: Input Offset Voltage.
FIGURE 2-2: PSRR, CMRR vs.
Frequency.
FIGURE 2-3: Input Bias Current at +85°C.
FIGURE 2-4: CMRR, PSRR vs. Ambient
Temperature.
FIGURE 2-5: Open-Loop Gain, Phase vs.
Frequency.
FIGURE 2-6: Input Bias Current at
+125°C.
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
0%
2%
4%
6%
8%
10%
12%
14%
16%
18%
20%
-5
-4
-3
-2
-1
0
1
2
3
4
5
Input Offset Voltage (mV)
Percentage of Occurrences
630 Samples
VCM = VSS
20
30
40
50
60
70
80
90
100
1.E+01 1.E+02 1.E+03 1.E+04 1.E+05
Frequency (Hz)
PSRR, CMRR (dB)
10 1k 10k 100k100
PSRR+
PSRR-
CMRR
0%
2%
4%
6%
8%
10%
12%
14%
16%
18%
20%
0
6
12
18
24
30
36
42
Input Bias Current (pA)
Percentage of Occurrences
630 Samples
VCM = VDD/2
TA = +85°C
70
75
80
85
90
-50 -25 0 25 50 75 100 125
Ambient Temperature (°C)
CMRR, PSRR (dB)
PSRR (VCM = VSS)
CMRR (VCM = -0.3V to +5.3V,
VDD = 5.0V)
-20
0
20
40
60
80
100
120
1.E-
01
1.E+
00
1.E+
01
1.E+
02
1.E+
03
1.E+
04
1.E+
05
1.E+
06
1.E+
07Frequency (Hz)
Open-Loop Gain (dB)
-210
-180
-150
-120
-90
-60
-30
0
Open-Loop Phase (°)
RL = 10 k
VCM = VDD/2
0.1 1 10 100 1k 10k 100k 1M 10M
Gain
Phase
0%
5%
10%
15%
20%
25%
30%
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
Input Bias Current (nA)
Percentage of Occurrences
632 Samples
VCM = VDD/2
TA = +125°C
14% C,/
MCP6231/1R/1U/2/4
DS21881E-page 6 © 2009 Microchip Technology Inc.
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,
RL = 100 kΩ to VDD/2 and CL = 60 pF.
FIGURE 2-7: Input Noise Voltage Density
vs. Frequency.
FIGURE 2-8: Input Offset Voltage vs.
Common Mode Input Voltage at VDD = 1.8V.
FIGURE 2-9: Input Offset Voltage vs.
Common Mode Input Voltage at VDD = 5.5V.
FIGURE 2-10: Input Offset Voltage Drift.
FIGURE 2-11: Input Offset Voltage vs.
Output Voltage.
FIGURE 2-12: Output Short-Circuit Current
vs. Ambient Temperature.
10
100
1,000
1.E-01 1.E+0
01.E+0
11.E+0
21.E+0
31.E+0
41.E+0
5Frequency (Hz)
Input Noise Voltage Density
(nV/Hz)
0.1 100 1k 10k 100k101
150
250
350
450
550
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
Common Mode Input Voltage (V)
Input Offset Voltage (µV)
VDD = 1.8V TA = -40°C
TA = +25°C
TA = +85°C
TA = +125°C
-200
-150
-100
-50
0
50
100
150
200
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
Common Mode Input Voltage (V)
Input Offset Voltage (µV)
VDD = 5.5 V
TA = +125°C
TA = +85°C
TA = +25°C
TA = -40°C
0%
2%
4%
6%
8%
10%
12%
14%
16%
18%
20%
-12
-10
-8
-6
-4
-2
0
2
4
6
8
10
12
Input Offset Voltage Drift (µV/°C)
Percentage of Occurrences
628 Samples
VCM = VSS
TA = -40°C to +125°C
-300
-250
-200
-150
-100
-50
0
50
100
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Output Voltage (V)
Input Offset Voltage (µV)
VDD = 1.8V
VCM = VSS
VDD = 5.5V
-30
-25
-20
-15
-10
-5
0
5
10
15
20
25
30
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Power Supply Voltage (V)
Output Short-Circuit Current
(mA)
TA = +125°C
TA = +85°C
TA = +25°C
TA = -40°C
+ISC
-ISC
© 2009 Microchip Technology Inc. DS21881E-page 7
MCP6231/1R/1U/2/4
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,
RL = 100 kΩ to VDD/2 and CL = 60 pF.
FIGURE 2-13: Slew Rate vs. Ambient
Temperature.
FIGURE 2-14: Output Voltage Headroom
vs. Output Current Magnitude.
FIGURE 2-15: Maximum Output Voltage
Swing vs. Frequency.
FIGURE 2-16: Small-Signal, Non-Inverting
Pulse Response.
FIGURE 2-17: Large-Signal, Non-Inverting
Pulse Response.
FIGURE 2-18: Quiescent Current vs.
Power Supply Voltage.
0.05
0.10
0.15
0.20
0.25
0.30
-50-25 0 255075100125
Ambient Temperature (°C)
Slew Rate (V/µs)
Falling Edge
Rising Edge VDD = 1.8V
VDD = 5.5V
1
10
100
1,000
1.E-02 1.E-01 1.E+00 1.E+01
Output Current Magnitude (A)
Output Voltage Headroom
(mV)
VDD – VOH
10m1m
VOL – VSS
100µ10µ
0.1
1
10
1.E+03 1.E+04 1.E+05 1.E+06
Frequency (Hz)
Max. Output Voltage Swing
(VP-P)
VDD = 5.5V
VDD = 1.8V
1k 10k 100k 1M
Time (2 µs/div)
Output Voltage (10 mV/div)
G = +1 V/V
RL = 10 k
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Time (20 µs/div)
Output Voltage (V)
VDD = 5.0V
G = +1 V/V
0
5
10
15
20
25
30
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Power Supply Voltage (V)
Quiescent Current
per Amplifier (µA)
VCM = 0.9V
DD
TA = +125°C
TA = +85°C
TA = +25°C
TA = -40°C
MCP6231/1R/1U/2/4
DS21881E-page 8 © 2009 Microchip Technology Inc.
FIGURE 2-19: Measured Input Current vs.
Input Voltage (below VSS). FIGURE 2-20: The MCP6231/1R/1U/2/4
Show No Phase Reversal.
1.E-12
1.E-11
1.E-10
1.E-09
1.E-08
1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
Input Voltage (V)
Input Current Magnitude (A)
+125°C
+85°C
+25°C
-40°C
10m
1m
100µ
10µ
100n
10n
1n
100p
10p
1p
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
Time (1 ms/div)
Input, Output Voltages (V)
VOUT
VIN
VDD = 5.0V
G = +2 V/V
© 2009 Microchip Technology Inc. DS21881E-page 9
MCP6231/1R/1U/2/4
3.0 PIN DESCRIPTIONS
Descriptions of the pins are listed in Table 3-1 (single op amps) and Table 3-2 (dual and quad op amps).
TABLE 3-1: PIN FUNCTION TABLE FOR SINGLE OP AMPS
TABLE 3-2: PIN FUNCTION TABLE FOR DUAL AND QUAD OP AMPS
3.1 Analog Outputs
The output pins are low-impedance voltage sources.
3.2 Analog Inputs
The non-inverting and inverting inputs are
high-impedance CMOS inputs with low bias currents.
3.3 Power Supply (VSS and VDD)
The positive power supply (VDD) is 1.8V to 6.0V higher
than the negative power supply (VSS). For normal
operation, the other pins are between VSS and VDD.
Typically, these parts are used in a single (positive)
supply configuration. In this case, VSS is connected to
ground and VDD is connected to the supply. VDD will
need bypass capacitors.
3.4 Exposed Thermal Pad (EP)
There is an internal electrical connection between the
Exposed Thermal Pad (EP) and the VSS pin; they must
be connected to the same potential on the Printed
Circuit Board (PCB).
MCP6231 MCP6231R MCP6231U
Symbol Description
DFN, MSOP,
PDIP, SOIC SOT-23-5 SOT-23-5 SOT-23-5
SC70
6114V
OUT Analog Output
2443V
IN Inverting Input
3331V
IN+ Non-inverting Input
7525V
DD Positive Power Supply
4252V
SS Negative Power Supply
1, 5, 8 NC No Internal Connection
9 EP Exposed Thermal Pad (EP); must be
connected to VSS.
MCP6232 MCP6234
Symbol Description
MSOP, PDIP,
SOIC, TDFN PDIP, SOIC, TSSOP
11V
OUTA Analog Output (op amp A)
22V
INA Inverting Input (op amp A)
33V
INA+ Non-inverting Input (op amp A)
84V
DD Positive Power Supply
55V
INB+ Non-inverting Input (op amp B)
66V
INB Inverting Input (op amp B)
77V
OUTB Analog Output (op amp B)
—8V
OUTC Analog Output (op amp C)
—9V
INC Inverting Input (op amp C)
—10V
INC+ Non-inverting Input (op amp C)
411V
SS Negative Power Supply
—12V
IND+ Non-inverting Input (op amp D)
—13V
IND Inverting Input (op amp D)
—14V
OUTD Analog Output (op amp D)
9 Exposed Thermal Pad (EP); must be connected to VSS.
MCP6231/1R/1U/2/4
DS21881E-page 10 © 2009 Microchip Technology Inc.
NOTES:
© 2009 Microchip Technology Inc. DS21881E-page 11
MCP6231/1R/1U/2/4
4.0 APPLICATION INFORMATION
The MCP6231/1R/1U/2/4 family of op amps is
manufactured using Microchip’s state-of-the-art CMOS
process and is specifically designed for low-cost,
low-power and general-purpose applications. The low
supply voltage, low quiescent current and wide
bandwidth makes the MCP6231/1R/1U/2/4 ideal for
battery-powered applications.
4.1 Rail-to-Rail Inputs
4.1.1 PHASE REVERSAL
The MCP6231/1R/1U/2/4 op amp is designed to
prevent phase reversal when the input pins exceed the
supply voltages. Figure 4-1 shows the input voltage
exceeding the supply voltage without any phase
reversal.
FIGURE 4-1: The MCP6231/1R/1U/2/4
Show No Phase Reversal.
4.1.2 INPUT VOLTAGE AND CURRENT
LIMITS
The ESD protection on the inputs can be depicted as
shown in Figure 4-2. This structure was chosen to
protect the input transistors, and to minimize input bias
current (IB). The input ESD diodes clamp the inputs
when they try to go more than one diode drop below
VSS. They also clamp any voltages that go too far
above VDD; their breakdown voltage is high enough to
allow normal operation, and low enough to bypass
quick ESD events within the specified limits.
FIGURE 4-2: Simplified Analog Input ESD
Structures.
In order to prevent damage and/or improper operation
of these op amps, the circuit they are in must limit the
currents and voltages at the VIN+ and VIN– pins (see
Absolute Maximum Ratings † at the beginning of
Section 1.0 “Electrical Characteristics”). Figure 4-3
shows the recommended approach to protecting these
inputs. The internal ESD diodes prevent the input pins
(VIN+ and VIN–) from going too far below ground, and
the resistors R1 and R2 limit the possible current drawn
out of the input pins. Diodes D1 and D2 prevent the
input pins (VIN+ and VIN–) from going too far above
VDD, and dump any currents onto VDD. When
implemented as shown, resistors R1 and R2 also limit
the current through D1 and D2.
FIGURE 4-3: Protecting the Analog
Inputs.
It is also possible to connect the diodes to the left of
resistors R1 and R2. In this case, current through the
diodes D1 and D2 needs to be limited by some other
mechanism. The resistors then serve as in-rush current
limiters; the DC current into the input pins (VIN+ and
VIN–) should be very small.
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
Time (1 ms/div)
Input, Output Voltages (V)
VOUT
VIN
VDD = 5.0V
G = +2 V/V
Bond
Pad
Bond
Pad
Bond
Pad
VDD
VIN+
VSS
Input
Stage Bond
Pad VIN
V1
MCP623X
R1
VDD
D1
R1>VSS – (minimum expected V1)
2mA
R2>VSS – (minimum expected V2)
2mA
V2R2
D2
R3
MCP6231/1R/1U/2/4
DS21881E-page 12 © 2009 Microchip Technology Inc.
A significant amount of current can flow out of the
inputs when the common mode voltage (VCM) is below
ground (VSS); see Figure 2-19. Applications that are
high impedance may need to limit the usable voltage
range.
4.1.3 NORMAL OPERATION
The input stage of the MCP6231/1R/1U/2/4 op amps
use two differential CMOS input stages in parallel. One
operates at low common mode input voltage (VCM),
while the other operates at high VCM. WIth this
topology, the device operates with VCM up to 0.3V
above VDD and 0.3V below VSS.
4.2 Rail-to-Rail Output
The output voltage range of the MCP6231/1R/1U/2/4
op amps is VDD – 35 mV (maximum) and VSS + 35 mV
(minimum) when RL=10kΩ is connected to VDD/2 and
VDD = 5.5V. Refer to Figure 2-14 for more information.
4.3 Capacitive Loads
Driving large capacitive loads can cause stability
problems for voltage feedback op amps. As the load
capacitance increases, the feedback loop’s phase
margin decreases and the closed-loop bandwidth is
reduced. This produces gain peaking in the frequency
response, with overshoot and ringing in the step
response. A unity-gain buffer (G = +1) is the most
sensitive to capacitive loads, but all gains show the
same general behavior.
When driving large capacitive loads with these op
amps (e.g., > 60 pF when G = +1), a small series
resistor at the output (RISO in Figure 4-4) improves the
feedback loop’s phase margin (stability) by making the
output load resistive at higher frequencies. The
bandwidth will be generally lower than the bandwidth
with no capacitive load.
FIGURE 4-4: Output resistor, RISO
stabilizes large capacitive loads.
Figure 4-5 gives recommended RISO values for
different capacitive loads and gains. The x-axis is the
normalized load capacitance (CL/GN), where GN is the
circuit’s noise gain. For non-inverting gains, GN and the
signal gain are equal. For inverting gains, GN is
1 + |Signal Gain| (e.g., –1 V/V gives GN = +2 V/V).
FIGURE 4-5: Recommended RISO Values
for Capacitive Loads.
After selecting RISO for your circuit, double-check the
resulting frequency response peaking and step
response overshoot. Evaluation on the bench and
simulations with the MCP6231/1R/1U/2/4 SPICE
macro model are very helpful. Modify RISO’s value until
the response is reasonable.
4.4 Supply Bypass
With this op amp, the power supply pin (VDD for
single-supply) should have a local bypass capacitor
(i.e., 0.01 µF to 0.1 µF) within 2 mm for good
high-frequency performance. It can use a bulk
capacitor (i.e., 1 µF or larger) within 100 mm to
provide large, slow currents. This bulk capacitor can
be shared with other nearby analog parts.
4.5 Unused Op Amps
An unused op amp in a quad package (MCP6234)
should be configured as shown in Figure 4-6. Both
circuits prevent the output from toggling and causing
crosstalk. Circuit A can use any reference voltage
between the supplies, provides a buffered DC voltage
and minimizes the supply current draw of the unused
op amp. Circuit B minimizes the number of
components, but may draw a little more supply current
for the unused op amp.
FIGURE 4-6: Unused Op Amps.
VIN
RISO VOUT
MCP623X
CL
+
100
1,000
10,000
10 100 1000 10000
Normalized Load Capacitance; CL/GN (F)
Recommended RISO ()
GN = 1 V/V
GN = 2 V/V
GN 4 V/V
10p 100p 1n 10n
10k
1k
100
VDD
VDD
¼ MCP6234 (A) ¼ MCP6234 (B)
R1
R2
VDD
VREF
VREF VDD
R2
R1R2
+
--------------------
=
© 2009 Microchip Technology Inc. DS21881E-page 13
MCP6231/1R/1U/2/4
4.6 PCB Surface Leakage
In applications where low input bias current is critical,
Printed Circuit Board (PCB) surface leakage effects
need to be considered. Surface leakage is caused by
humidity, dust or other contamination on the board.
Under low humidity conditions, a typical resistance
between nearby traces is 1012Ω. A 5V difference would
cause 5 pA of current to flow, which is greater than the
MCP6231/1R/1U/2/4 family’s bias current at +25°C
(1 pA, typical).
The easiest way to reduce surface leakage is to use a
guard ring around sensitive pins (or traces). The guard
ring is biased at the same voltage as the sensitive pin.
An example of this type of layout is shown in
Figure 4-7.
FIGURE 4-7: Example Guard Ring Layout
for Inverting Gain.
1. Non-inverting Gain and Unity-Gain Buffer:
a. Connect the non-inverting pin (VIN+) to the
input with a wire that does not touch the
PCB surface.
b. Connect the guard ring to the inverting input
pin (VIN–). This biases the guard ring to the
common mode input voltage.
2. Inverting Gain and Transimpedance Amplifiers
(convert current to voltage, such as photo
detectors):
a. Connect the guard ring to the non-inverting
input pin (VIN+). This biases the guard ring
to the same reference voltage as the op
amp (e.g., VDD/2 or ground).
b. Connect the inverting pin (VIN–) to the input
with a wire that does not touch the PCB
surface.
4.7 Application Circuits
4.7.1 MATCHING THE IMPEDANCE AT
THE INPUTS
To minimize the effect of input bias current in an ampli-
fier circuit (this is important for very high source-
impedance applications, such as pH meters and
transimpedance amplifiers), the impedances at the
inverting and non-inverting inputs need to be
matched. This is done by choosing the circuit resistor
values so that the total resistance at each input is the
same. Figure 4-8 shows a summing amplifier circuit.
FIGURE 4-8: Summing Amplifier Circuit.
To match the inputs, set all voltage sources to ground
and calculate the total resistance at the input nodes. In
this summing amplifier circuit, the resistance at the
inverting input is calculated by setting VIN1, VIN2 and
VOUT to ground. In this case, RG1, RG2 and RF are in
parallel. The total resistance at the inverting input is:
EQUATION 4-1:
At the non-inverting input, VDD is the only voltage
source. When VDD is set to ground, both Rx and Ry are
in parallel. The total resistance at the non-inverting
input is:
EQUATION 4-2:
Guard Ring
VSS
VIN–V
IN+
MCP623X VOUT
VIN2
+
VIN1
RG2
RG1
RF
RZ
VDD
RX
RY
RVIN1
1
RG1
--------- 1
RG2
--------- 1
RF
------++
⎝⎠
⎛⎞
----------------------------------------------=
Where:
RVIN= total resistance at the inverting
input
RVIN+1
1
RX
------ 1
RY
------+
⎝⎠
⎛⎞
--------------------------R
Z
+=
Where:
RVIN+= total resistance at the inverting
input
MCP6231/1R/1U/2/4
DS21881E-page 14 © 2009 Microchip Technology Inc.
To minimize output offset voltage and increase circuit
accuracy, the resistor values need to meet the
conditions:
EQUATION 4-3:
4.7.2 COMPENSATING FOR THE
PARASITIC CAPACITANCE
In analog circuit design, the PCB parasitic capacitance
can compromise the circuit behavior; Figure 4-9 shows
a typical scenario. If the input of an amplifier sees
parasitic capacitance of several picofarad (CPARA,
which includes the common mode capacitance of 6 pF,
typical), and large RF and RG, the frequency response
of the circuit will include a zero. This parasitic zero
introduces gain-peaking and can cause circuit
instability.
FIGURE 4-9: Effect of Parasitic
Capacitance at the Input.
One solution is to use smaller resistor values to push
the zero to a higher frequency. Another solution is to
compensate by introducing a pole at the point at which
the zero occurs. This can be done by adding CF in
parallel with the feedback resistor (RF). CF needs to be
selected so that the ratio CPARA:CF is equal to the ratio
of RF:RG.
RVIN+RVIN=
VOUT
CF
VDC
+
VAC
RGRF
CPARA
CFCPARA
RG
RF
-------
=
MCP623X
© 2009 Microchip Technology Inc. DS21881E-page 15
MCP6231/1R/1U/2/4
5.0 DESIGN AIDS
Microchip provides the basic design tools needed for
the MCP6231/1R/1U/2/4 family of op amps.
5.1 SPICE Macro Model
The latest SPICE macro model for the MCP6231/1R/
1U/2/4 op amps is available on the Microchip web site
at www.microchip.com. This model is intended to be an
initial design tool that works well in the op amp’s linear
region of operation over the temperature range. See
the model file for information on its capabilities.
Bench testing is a very important part of any design and
cannot be replaced with simulations. Also, simulation
results using this macro model need to be validated by
comparing them to the data sheet specifications and
characteristic curves.
5.2 FilterLab® Software
Microchip’s FilterLab® software is an innovative
software tool that simplifies analog active filter (using
op amps) design. Available at no cost from the
Microchip web site at www.microchip.com/filterlab, the
FilterLab design tool provides full schematic diagrams
of the filter circuit with component values. It also
outputs the filter circuit in SPICE format, which can be
used with the macro model to simulate actual filter
performance.
5.3 Mindi™ Circuit Designer &
Simulator
Microchip’s Mindi™ Circuit Designer & Simulator aids
in the design of various circuits useful for active filter,
amplifier and power-management applications. It is a
free online circuit designer & simulator available from
the Microchip web site at www.microchip.com/mindi.
This interactive circuit designer & simulator enables
designers to quickly generate circuit diagrams,
simulate circuits. Circuits developed using the Mindi
Circuit Designer & Simulator can be downloaded to a
personal computer or workstation.
5.4 Microchip Advanced Part Selector
(MAPS)
MAPS is a software tool that helps semiconductor
professionals efficiently identify Microchip devices that
fit a particular design requirement. Available at no cost
from the Microchip web site at www.microchip.com/
maps, the MAPS is an overall selection tool for
Microchip’s product portfolio that includes Analog,
Memory, MCUs and DSCs. Using this tool you can
define a filter to sort features for a parametric search of
devices and export side-by-side technical comparison
reports. Helpful links are also provided for Data sheets,
Purchase, and Sampling of Microchip parts.
5.5 Analog Demonstration and
Evaluation Boards
Microchip offers a broad spectrum of Analog
Demonstration and Evaluation Boards that are
designed to help you achieve faster time to market. For
a complete listing of these boards and their
corresponding user’s guides and technical information,
visit the Microchip web site at:
www.microchip.com/analogtools
Two of our boards that are especially useful are:
P/N SOIC8EV: 8-Pin SOIC/MSOP/TSSOP/DIP
Evaluation Board
P/N SOIC14EV: 14-Pin SOIC/TSSOP/DIP
Evaluation Board
5.6 Application Notes
The following Microchip Application Notes are
available on the Microchip web site at www.microchip.
com/appnotes and are recommended as supplemental
reference resources.
ADN003: “Select the Right Operational Amplifier
for your Filtering Circuits”, DS21821
AN722: “Operational Amplifier Topologies and DC
Specifications”, DS00722
AN723: “Operational Amplifier AC Specifications
and Applications”, DS00723
AN884: “Driving Capacitive Loads With Op
Amps”, DS00884
AN990: “Analog Sensor Conditioning Circuits –
An Overview”, DS00990
These application notes and others are listed in the
design guide:
“Signal Chain Design Guide”, DS21825
MCP6231/1R/1U/2/4
DS21881E-page 16 © 2009 Microchip Technology Inc.
NOTES:
F! F! HHH H H NNN alor ( )
© 2009 Microchip Technology Inc. DS21881E-page 17
MCP6231/1R/1U/2/4
6.0 PACKAGING INFORMATION
6.1 Package Marking Information
5-Lead SC70 (MCP6231U Only) Example:
123
54
5-Lead SOT-23 Example:
XXNN
123
54
BJ25
Device Code
MCP6231 BJNN
MCP6231R BKNN
MCP6231UBLNN
Note: Applies to 5-Lead SOT-23.
8-Lead MSOP Example:
XXXXXX
YWWNNN
6232E
929256
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
XXNN AS25
8-Lead DFN (2 x 3) (MCP6231)Example:
8-Lead TDFN (2 x 3) (MCP6232)Example:
XXX
YWW
NNN
AER
929
256
XXX
YWW
NNN
AAE
929
256
mmmfl mmmfl fifi‘wfi‘wfl ":3ch 0% 0% 0’9 LALLALLALJ LALJJLLALJ LALLALUJLJ flflflfl flflflfl HHHH SN 0% QQZ 0% UUUU UUUU UUUU H‘wf‘wf‘wf‘wf‘wf‘wf‘w H‘wf‘wf‘wf‘wf‘wf‘wf‘w o fi> o 49 HHHHHHHHLUJLLALUJ HHHHHHLUJLUJLUJLH H H H H H H H H H H H H H H 0 Q 0 Q U U U U U U U U U U U U U U HHHHHHH HHHHHHH Q? €§ C) (‘ UHUUHHU UHUUUHU
MCP6231/1R/1U/2/4
DS21881E-page 18 © 2009 Microchip Technology Inc.
Package Marking Information (Continued)
14-Lead PDIP (300 mil) (MCP6234)Example:
14-Lead TSSOP (MCP6234)Example:
14-Lead SOIC (150 mil) (MCP6234)Example:
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
YYWWNNN
XXXXXXXXXX
YYWWNNN
XXXXXXXX
YYWW
NNN
MCP6234
0929256
6234E
0929
256
XXXXXXXXXX
MCP6234
0929256
E/P^^
E/SL^^
3
e
3
e
8-Lead SOIC (150 mil) Example:
XXXXXXXX
XXXXYYWW
NNN
MCP6232
E/SN0929
256
MCP6232E
SN 0929
256
OR
3
e
XXXXXXXX
XXXXXNNN
YYWW
8-Lead PDIP (300 mil) Example:
MCP6232
E/P256
0929
MCP6232
E/P 256
0929
3
e
OR
© 2009 Microchip Technology Inc. DS21881E-page 19
MCP6231/1R/1U/2/4


  !"!#$!!% #$  !% #$   #&! !
 !#"'(
)*+ )  #&#,$ --#$## 
 .# #$#/!- 0  #1/%##!#
##+22---2/
3# 44""
 4# 5 56 7
5$8%1 5 (
1#  9()*
6,:#  ; < 
!!1//  ; < 
#!%%   < 
6,=!# " ;  
!!1/=!# " ( ( (
6,4#  ;  (
.#4# 4   9
4!/ ; < 9
4!=!# 8 ( < 
D
b
1
23
E1
E
45
ee
c
L
A1
AA2
  - *9)
MCP6231/1R/1U/2/4
DS21881E-page 20 © 2009 Microchip Technology Inc.
 .# #$#/!- 0  #1/%##!#
##+22---2/
© 2009 Microchip Technology Inc. DS21881E-page 21
MCP6231/1R/1U/2/4
 !

   !"!#$!!% #$  !% #$   #&! !
  !#"'(
)*+ )  #&#,$ --#$## 
 .# #$#/!- 0  #1/%##!#
##+22---2/
3# 44""
 4# 5 56 7
5$8%1 5 (
4!1#  ()*
6$# !4!1#  )*
6,:#   < (
!!1//  ; < 
#!%%   < (
6,=!# "  < 
!!1/=!# "  < ;
6,4#   < 
.#4# 4  < 9
.## 4 ( < ;
.# I> < >
4!/ ; < 9
4!=!# 8  < (
φ
N
b
E
E1
D
123
e
e1
A
A1
A2 c
L
L1
  - *)
8-Lead Plastic Dual Flat, No Lead Package (MC) — 2x3x0.9 mm Body [DFN] N1234
MCP6231/1R/1U/2/4
DS21881E-page 22 © 2009 Microchip Technology Inc.
"#$%&'() *!*+,-.#$

1, $!&%#$,08$#$ #8#!-###!
1/,& !#8 #! 
1/  - $#!
 !#"'(
)*+ )  #&#,$ --#$## 
".+ % 0$ $-#$##0%%#$  
 .# #$#/!- 0  #1/%##!#
##+22---2/
3# 44""
 4# 5 56 7
5$8%1 5 ;
1#  ()*
6,:#  ;  
#!%%    (
*##/  ".
6,4#  )*
6,=!# " )*
"& !1!4#   < ((
"& !1!=!# " ( < (
*##=!# 8  ( 
*##4# 4   (
*###"& !1! ?  < <
D
N
E
NOTE 1
12
EXPOSED PAD
NOTE 1
21
D2
K
L
E2
N
e
b
A3 A1
A
NOTE 2
BOTTOM VIEW
TOP VIEW
  - **
8-Lead Plastic Dual Flat, No Lead Package (MC) — 2x3x0.9 mm Body [DFN] W2 53% RECOMMENDED LAND PATTERN S‘LK SCREEN um; NHLLIMETERS Dwmensmn Lirmls MIN | NOM | MAX Cunlad lech E D 50 BSC Opllunal Center Pad Wwdth W2 1 45 Opllunal Center Pad Lengm T2 1 75 Camac: Pad Spacmg c1 2 90 Contact Pad deth (x3) X1 0 30 Contact Pad Length (x5) v1 0 75 Dwstance Between Pads G o 20 Notes: 1. Dwmensioning and |o\erancmg perASME Y14.5M BSC: Baswc Dimensmn Theorencany exact va‘ue shown wnhoul |o\erances Mmmcmp Techno‘ogy Drawing No. C0472123A
© 2009 Microchip Technology Inc. DS21881E-page 23
MCP6231/1R/1U/2/4
"#$%&'() *!*+,-.#$
 .# #$#/!- 0  #1/%##!#
##+22---2/
8-Lead Plastic Dual Flat, No Lead Package (MN) — 2x3x0.75 mm Body [TDFN] 1 1 1 K J 1 1 — /7’7j — ' '— ' <\ 9="" exposed="" j,="" 1="" \\\\="" \="" i="" m="" ‘g="" note1="" —///////////‘="" ‘="" \\="" n0te1="" a="" ,i="" 1="" 2="" 1="" 2="" 1="" x="" see="" deta‘la="" l="" 7="" ‘—="" dz="" ——="" top="" view="" i="" i="" bottom="" view="" ii="" detail="" a="" i="" 1="" a="" alternate="" :="" ;="" cs‘iixtpaecst="" asref="" j="" a1="" j="" i="" notez="" umts="" m1ll|meters="" d1menslon="" mm:="" mm="" |="" noni="" |="" max="" number="" of="" pins="" n="" b="" puch="" e="" 0="" 50="" e30="" overah="" he1ght="" a="" o="" 70="" o="" 75="" u="" so="" standofl="" a1="" 0="" 00="" u="" 02="" 0="" 05="" contact="" thlckness="" a3="" 0="" 20="" ref="" ovetah="" length="" d="" 2="" 00="" bsc="" ovetah="" width="" e="" 3="" 00="" e80="" exposed="" pad="" lengih="" d2="" 1="" 20="" ,="" 1="" 60="" exposed="" pad="" w1dlh="" e2="" 1="" 20="" ,="" 1="" 60="" contact="" math="" :2="" o="" 20="" 0="" 25="" 0="" 30="" contact="" length="" l="" 0="" 25="" 0="" 30="" o="" 45="" contacherxposed="" fad="" k="" 0="" 20="" ,="" ,="" notes:="" 1="" fm="" 1="" v1sua1="" muex="" feature="" may="" vary,="" bul="" must="" be="" located="" mm="" the="" hatched="" area="" 2.="" package="" may="" nave="" one="" or="" more="" exposed="" t1e="" bars="" at="" ends.="" 3.="" package="" 15="" saw="" s1ngu1atea="" 4="" d1menslonmg="" and="" to1erancmg="" perasme="" v14="" 5m="" bsc="" bas1c="" dmensmn="" theoreticany="" exact="" vaiue="" shown="" w1thcui="" ta1erances="" ref="" reterenee="" dimensmn,="" usuahy="" w1thuulla1erance‘="" for="" mfurmahon="" purposes="" on1y="" m1crachip="" tecnnmogy="" drawing="" no.c0471zbb="">
MCP6231/1R/1U/2/4
DS21881E-page 24 © 2009 Microchip Technology Inc.
"#$%&'() *!*+-.#$
 .# #$#/!- 0  #1/%##!#
##+22---2/
W2 SILK SCREEN ”16V ~—~~UD —w:@flmufi Eww RECOMMENDED LAND PATTERN Unks MILLIMETERS Dimensxon mks MW \ NOM \ MAX Camact Pllch E 0.50 ESC Ophuna‘ Cenler Pad Width W2 1 46 Optwuna‘ Cenler Pad Length T2 1 36 CnMact Pad Spaclng C1 3 00 Cumact Pad Width (X5) X1 D 30 Contact Pad Lengm (x5) Y1 u 75 sttance Between Pads 6 o 20 Notes: 1. Dimenswomng and mlerancmg per ASME Y14.5M BSC: Baswc Dwmension. TheoreticaHy exact veme shown without tolerances. chrocmp Techno‘ogy Drawing No 60472129»!
© 2009 Microchip Technology Inc. DS21881E-page 25
MCP6231/1R/1U/2/4
"#$%&'() *!*+-.#$
 .# #$#/!- 0  #1/%##!#
##+22---2/
MCP6231/1R/1U/2/4
DS21881E-page 26 © 2009 Microchip Technology Inc.
"(&'((

1, $!&%#$,08$#$ #8#!-###!
  !"!#$!!% #$  !% #$   #&!( !
 !#"'(
)*+ )  #&#,$ --#$## 
".+ % 0$ $-#$##0%%#$  
 .# #$#/!- 0  #1/%##!#
##+22---2/
3# 44""
 4# 5 56 7
5$8%1 5 ;
1#  9()*
6,:#  < < 
!!1//  ( ;( (
#!%%   < (
6,=!# " )*
!!1/=!# " )*
6,4#  )*
.#4# 4  9 ;
.## 4 (".
.# I> < ;>
4!/ ; < 
4!=!# 8  < 
D
N
E
E1
NOTE 1
12
e
b
A
A1
A2 c
L1 L
φ
  - *)
WO-Lead Plastic Micro Small Oufline Package (MS) [MSOP] X SILK A LJLGX RECOMMENDED LAND PATTERN Umts MILUMETERS Dwmension mewts MIN \ NOM \ MAX Contad Pm E 0.50 380 Contad Pad Spacmg c 4.40 Overau deth 2 5.30 Comm Pad wmm (x10) x1 0.30 Contact Pad Lenglh (x10) w 140 Dlslance Between Pads G1 3 DO Dlslance Between Pads GX 0 20 Notes: 1 Dimensmning and to‘erancing per ASME v14 5M BSC Basic Dimenswon. Theoreucauy exact value shown wnnom (o‘erances. Mlcnmmp Technology Drawmg No GOA-2021A
© 2009 Microchip Technology Inc. DS21881E-page 27
MCP6231/1R/1U/2/4
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
N1234
MCP6231/1R/1U/2/4
DS21881E-page 28 © 2009 Microchip Technology Inc.
"#/)!-.#/

1, $!&%#$,08$#$ #8#!-###!
@%#*# #
  !"!#$!!% #$  !% #$   #&!A !
 !#"'(
)*+)  #&#,$ --#$## 
 .# #$#/!- 0  #1/%##!#
##+22---2/
3# 5*:"
 4# 5 56 7
5$8%1 5 ;
1#  )*
##1  < < 
!!1//  (  (
) ##1  ( < <
$!#$!=!# "   (
!!1/=!# "  ( ;
6,4#  ; 9( 
##1 4 (  (
4!/ ;  (
34!=!# 8  9 
4-4!=!# 8  ; 
6,-@ ) < < 
N
E1
NOTE 1
D
123
A
A1
A2
L
b1
b
e
E
eB
c
  - *;)
© 2009 Microchip Technology Inc. DS21881E-page 29
MCP6231/1R/1U/2/4
")0%!+,-./

 1, $!&%#$,08$#$ #8#!-###!
 @%#*# #
   !"!#$!!% #$  !% #$   #&!( !
  !#"'(
)*+ )  #&#,$ --#$## 
".+ % 0$ $-#$##0%%#$  
 .# #$#/!- 0  #1/%##!#
##+22---2/
3# 44""
 4# 5 56 7
5$8%1 5 ;
1#  )*
6,:#  < < (
!!1//  ( < <
#!%%
@
  < (
6,=!# " 9)*
!!1/=!# " )*
6,4#  )*
*%B#C  ( < (
.#4# 4  < 
.## 4 ".
.# I> < ;>
4!/  < (
4!=!# 8  < (
!%# D(> < (>
!%#)## E(> < (>
D
N
e
E
E1
NOTE 1
12 3
b
A
A1
A2
L
L1
c
h
h
φ
β
α
  - *()
Notes: / S‘LK SCREEN LJULJ A X1 RECOMMENDED LAND PATI'ERN Umts MILUMETERS Dwmension mewts MIN \ NOM \ MAX Contad Pimh E 1.27 530 Contad Pad Spacmg c 5.40 Comacl Pad deth (x3) x1 0.50 Contad Pad Lenglh (x5) w 1.55 1 Dimenswoning and (o‘erancing per ASME v14 SM 856 Basic Dimenswon. Theoreucauy exact value shown wnnout to‘erances. Microcmp Technolugy Drawmg No 604-2057A
MCP6231/1R/1U/2/4
DS21881E-page 30 © 2009 Microchip Technology Inc.
")0%!+,-./
 .# #$#/!- 0  #1/%##!#
##+22---2/
J H‘WH‘WH‘WF‘WH‘WH‘WH‘W 5% HHHHHHHHHHHHLUJ , A ‘Wfi
© 2009 Microchip Technology Inc. DS21881E-page 31
MCP6231/1R/1U/2/4
12#/)!-.#/

1, $!&%#$,08$#$ #8#!-###!
@%#*# #
  !"!#$!!% #$  !% #$   #&!A !
 !#"'(
)*+)  #&#,$ --#$## 
 .# #$#/!- 0  #1/%##!#
##+22---2/
3# 5*:"
 4# 5 56 7
5$8%1 5 
1#  )*
##1  < < 
!!1//  (  (
) ##1  ( < <
$!#$!=!# "   (
!!1/=!# "  ( ;
6,4#  ( ( (
##1 4 (  (
4!/ ;  (
34!=!# 8 ( 9 
4-4!=!# 8  ; 
6,-@ ) < < 
N
E1
D
NOTE 1
123
E
c
eB
A2
L
A
A1 b1
be
  - *()
Hflflmflflfl NNNNN
MCP6231/1R/1U/2/4
DS21881E-page 32 © 2009 Microchip Technology Inc.
12)0%!+,-./

1, $!&%#$,08$#$ #8#!-###!
@%#*# #
  !"!#$!!% #$  !% #$   #&!( !
 !#"'(
)*+ )  #&#,$ --#$## 
".+ % 0$ $-#$##0%%#$  
 .# #$#/!- 0  #1/%##!#
##+22---2/
3# 44""
 4# 5 56 7
5$8%1 5 
1#  )*
6,:#  < < (
!!1//  ( < <
#!%%@   < (
6,=!# " 9)*
!!1/=!# " )*
6,4#  ;9()*
*%B#C  ( < (
.#4# 4  < 
.## 4 ".
.# I> < ;>
4!/  < (
4!=!# 8  < (
!%# D(> < (>
!%#)## E(> < (>
NOTE 1
N
D
E
E1
123
b
e
A
A1
A2
L
L1
c
h
hα
β
φ
  - *9()
147Lead Plastic Small Outline (SL) , Narrow, 3.90 mm Body [SOIC] 4—1er T-EDDDDDE i /— SiLK .3] HUME: —>E<— —="">||<—x? t="" l_="" recommended="" land="" pattern="" units="" millimeters="" dimension="" limits="" min="" \="" nom="" \="" max="" contact="" pitch="" e="" 1.27="" bsc="" contact="" pad="" spacing="" c="" 5.40="" contact="" pad="" widtn="" x="" 0.50="" contact="" pad="" lengtn="" v="" 1.50="" distance="" between="" pads="" gx="" 0.57="" distance="" between="" pads="" g="" 3.90="" no1es'="" 1.dimensioning="" and="" toieranctng="" per="" asme="" y14.5m="" bsc="" basic="" dimension="" theoreticaily="" exact="" value="" shown="" without="" tuierances="" microchip="" technology="" drawing="" n0.="" coa-zdgsa="">
© 2009 Microchip Technology Inc. DS21881E-page 33
MCP6231/1R/1U/2/4
 .# #$#/!- 0  #1/%##!#
##+22---2/
HHHHHHH UUUUU JUN?
MCP6231/1R/1U/2/4
DS21881E-page 34 © 2009 Microchip Technology Inc.
1233&)2+2-.

 1, $!&%#$,08$#$ #8#!-###!
   !"!#$!!% #$  !% #$   #&!( !
  !#"'(
)*+ )  #&#,$ --#$## 
".+ % 0$ $-#$##0%%#$  
 .# #$#/!- 0  #1/%##!#
##+22---2/
3# 44""
 4# 5 56 7
5$8%1 5 
1#  9()*
6,:#  < < 
!!1//  ;  (
#!%%  ( < (
6,=!# " 9)*
!!1/=!# "   (
!!1/4#   ( (
.#4# 4 ( 9 (
.## 4 ".
.# I> < ;>
4!/  < 
4!=!# 8  < 
NOTE 1
D
N
E
E1
12
e
b
c
A
A1
A2
L1 L
φ
  - *;)
© 2009 Microchip Technology Inc. DS21881E-page 35
MCP6231/2/4
APPENDIX A: REVISION HISTORY
Revision E (August 2009)
The following is the list of modifications:
1. Added the 2x3 TDFN package for MCP6232.
2. Updated the 2x3 DFN package information for
MCP6231.
3. Updated the “Temperature Characteristics”
table.
4. Updated Section 3.0 “Pin Descriptions”.
5. Updated the Package Outline Drawings in
Section 6.0 “Packaging Information”.
6. Updated the Product Identification Systems
section.
Revision D (May 2008)
The following is the list of modifications:
1. Changed Heading “Available Tools” to “Design
Aids”.
2. Design Aids: Name change for Mindi Simulator
Tool.
3. Package Types: Added DFN to MCP6231
Device.
4. Absolute Maximum Ratings: Numerous
changes in this section.
5. Updated notes to Section 1.0 “Electrical
Characteristics”.
6. Added Test Circuits to Section 1.0 “Electrical
Characteristics”.
7. Corrected Figure 2-7.
8. Added Figure 2-19.
9. Numerous changes to Section 3.0 “Pin
Descriptions”.
10. Added Section 4.1.1 “Phase Reversal”,
Section 4.1.2 “Input Voltage and Current
Limits”, and Section 4.1.3 “Normal
Operation”.
11. Replaced Section 5.0 “Design Aids” with
additional information.
12. Updated Section 6.0 “Packaging
Information” with updated Package Outline
Drawings.
Revision C (March 2005)
The following is the list of modifications:
1. Added the MCP6234 quad op amp.
2. Corrected plots in Section 2.0 “Typical
Performance Curves”.
3. Added Section 3.0 “Pin Descriptions”.
4. Added new SC-70 package markings. Added
PDIP-14, SOIC-14, and TSSOP-14 packages
and corrected package marking information
(Section 6.0 “Packaging Information”).
5. Added Appendix A: “Revision History”.
Revision B (August 2004)
Undocumented changes.
Revision A (March 2004)
Original Release of this Document.
MCP6231/2/4
DS21881E-page 36 © 2009 Microchip Technology Inc.
NOTES:
PART No. v
© 2009 Microchip Technology Inc. DS21881E-page 37
MCP6231/2/4
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
Device: MCP6231: Single Op Amp (MSOP, PDIP, SOIC)
MCP6231T: Single Op Amp (Tape and Reel)
(MSOP, SOIC, SOT-23)
MCP6231RT: Single Op Amp (Tape and Reel)
(SOT-23)
MCP6231UT: Single Op Amp (Tape and Reel)
(SC70, SOT-23, TDFN)
MCP6232: Dual Op Amp
MCP6232T: Dual Op Amp (Tape and Reel)
(MSOP, SOIC)
MCP6234: Quad Op Amp
MCP6234T: Quad Op Amp (Tape and Reel)
(TSSOP, SOIC)
Temperature Range: E = -40° C to +125° C
Package: LT = Plastic Package (SC70), 5-lead (MCP6231U only)
MC = Plastic Dual Flat No-Lead (DFN) 2x3, 8-lead
(MCP6231 only)
MNY= Plastic Dual Flat No-Lead (TDFN) 2x3, 8-lead
(MCP6232 only)
MS = Plastic Micro Small Outline (MSOP), 8-lead
P = Plastic DIP (300 mil Body), 8-lead, 14-lead
OT = Plastic Small Outline Transistor (SOT-23), 5-lead
(MCP6231, MCP6231R, MCP6231U)
SN = Plastic SOIC (150 mil Body), 8-lead
SL = Plastic SOIC (150 mil Body), 14-lead
ST = Plastic TSSOP (4.4 mil Body), 14-lead
PART NO. -X /XX
PackageTemperature
Range
Device
Examples:
a) MCP6231-E/MC: Extended Temperature
8LD DFN package.
b) MCP6231-E/MS: Extended Temperature
8LD MSOP package.
c) MCP6231UT-E/LT: Tape and Reel,
Extended Temperature
5LD SC70 package.
d) MCP6231-E/P: Extended Temperature
8LD PDIP package.
e) MCP6231RT-E/OT: Tape and Reel,
Extended Temperature
5LD SOT-23 package
f) MCP6231UT-E/OT: Tape and Reel,
Extended Temperature
5LD SOT-23.
g) MCP6231-E/SN: Extended Temperature
8LD SOIC package.
a) MCP6232-E/SN: Extended Temperature
8LD SOIC package.
b) MCP6232-E/MS: Extended Temperature
8LD MSOP package.
c) MCP6232-E/P: Extended Temperature
8LD PDIP package.
d) MCP6232T-E/SN: Tape and Reel,
Extended Temperature
8LD SOIC package.
e) MCP6232T-E/MNY: Tape and Reel,
Extended Temperature
8LD TDFN package.
a) MCP6234-E/P: Extended Temperature
14LD PDIP package.
b) MCP6234-E/SL: Extended Temperature
14LD SOIC package.
c) MCP6234-E/ST: Extended Temperature,
14LD TSSOP package
d) MCP6234T-E/SL: Tape and Reel,
Extended Temperature
14LD SOIC package.
e) MCP6234T-E/ST: Tape and Reel,
Extended Temperature
14LD TSSOP package.
X
Tape and Reel
Alternate Pinout
and/or
MCP6231/2/4
DS21881E-page 38 © 2009 Microchip Technology Inc.
NOTES:
QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 1694922002 =
© 2009 Microchip Technology Inc. DS21881E-page 39
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
rfPIC and UNI/O are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA
are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
Q ‘MICROCHIP AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
DS21881E-page 40 © 2009 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
WORLDWIDE SALES AND SERVICE
03/26/09

Products related to this Datasheet

IC OPAMP GP 1 CIRCUIT SC70-5
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 2 CIRCUIT 8TDFN
IC OPAMP GP 2 CIRCUIT 8SOIC
IC OPAMP GP 2 CIRCUIT 8SOIC
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 4 CIRCUIT 14TSSOP
IC OPAMP GP 4 CIRCUIT 14SOIC
IC OPAMP GP 1 CIRCUIT 8SOIC
IC OPAMP GP 4 CIRCUIT 14TSSOP
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 1 CIRCUIT 8DIP
IC OPAMP GP 2 CIRCUIT 8TDFN
IC OPAMP GP 1 CIRCUIT 8DFN
IC OPAMP GP 1 CIRCUIT 8MSOP
IC OPAMP GP 1 CIRCUIT 8SOIC
IC OPAMP GP 2 CIRCUIT 8MSOP
IC OPAMP GP 1 CIRCUIT SC70-5
IC OPAMP GP 1 CIRCUIT 8DFN
IC OPAMP GP 4 CIRCUIT 14DIP
IC OPAMP GP 4 CIRCUIT 14TSSOP
IC OPAMP GP 2 CIRCUIT 8MSOP
IC OPAMP GP 4 CIRCUIT 14SOIC
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 2 CIRCUIT 8SOIC
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 1 CIRCUIT 8SOIC
IC OPAMP GP 2 CIRCUIT 8DIP