IRFS3006-7PPBF Datasheet by Infineon Technologies

View All Related Products | Download PDF Datasheet
Internatioml ISER Rectifier Parameter Vnss H4 R0540") typ. 1.5mQ :33 max. 2.1 m9 '0 (Silicon Limited) (D ID (Package Limited) \“ \“ a D s Gare Drawn Source Single Pulse Ava‘anche Energy (3) Ava‘anche Currem CZ) Repemive Avalanche Energy (3) Symbol Parameter Typ. Max. Units (Sm (3)6)
10/06/08
www.irf.com 1
HEXFET® Power MOSFET
Benefits
lImproved Gate, Avalanche and Dynamic dV/dt
Ruggedness
lFully Characterized Capacitance and Avalanche
SOA
lEnhanced body diode dV/dt and dI/dt Capability
l Lead-Free
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
S
D
G
PD - 96187
IRFS3006-7PPbF
GDS
Gate Drain Source
D2Pak 7 Pin
G
SS
D
SS
S
VDSS 60V
RDS
(
on
)
typ. 1.5m
max. 2.1m
ID
(
Silicon Limited
)
293A
ID
(
Packa
g
e Limited
)
240A
Absolute Maximum Ratings
Symbol Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited)
IDM Pulsed Drain Current
PD @TC = 25°C Maximum Power Dissipation W
Linear Derating Factor W/°C
VGS Gate-to-Source Voltage V
dv/dt Peak Diode Recovery V/ns
TJ Operating Junction and
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
EAS (Thermally limited) Sin
g
le Pulse Avalanche Ener
g
y mJ
IAR Avalanche Current A
EAR Repetitive Avalanche Ener
g
y mJ
Thermal Resistance
Symbol Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 0.4
RθJA Junction-to-Ambient (PCB Mount) ––– 40
-55 to + 175
± 20
2.5
10lb in (1.1N m)
Max.
293
207
1172
240
°C
A
°C/W
300
303
See Fig. 14, 15, 22a, 22b,
375
11
movur'omo‘ IEZR Rectflhe’ Symbal Parameter Min. Typ. Max. Units Candilions v Drain-m-Source Breakdown Vollage 60 — — v v S : 0v, ID : ZSOpA AV /AT Breakdown Vollage Temp. Coefhcienl —— 0 07 — V/°C Flelerence r0 25°C, |D : 5mA® R Slam DraTn-Io-Source On-FleSTSIance —— 1.5 2.1 m5; v S :10v, ID : 168A (3) V Gare Threshold Volrage 2.0 — 4.0 V V : V , ID : ZSOMA | Drain-m-Source Leakage Currenl — — 20 V 60V. V : 0V — — 250 V :60V.V :OV.TJ:125‘>C | Gare-Io-Source Forward Leakage — — 100 V s : 20V Gare-Io-Source Reverse Leakage — — -100 V S : -20V Parameter 9 9 Tolal Gale Charge Sync. (Q - Q ) """"DDDD‘° C elf (ER) C elf (TR) Symbol Parameter Candilions Min. Typ. Max. Unit Candilions (D T :25°C VR:51V. T : 125°C T : 25°C / T : 125°C T : 25°C 9 9
IRFS3006-7PPbF
2www.irf.com
S
D
G
Pulse width 400µs; duty cycle 2%.
Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
When mounted on 1" square PCB (FR-4 or G-10 Material). For
recommended footprint and soldering techniquea refer to applocation
note # AN-994 echniques refer to application note #AN-994.
Rθ is measured at TJ approximately 90°C
RθJC value shown is at time zero
Notes:
Calcuted continuous current based on maximum allowable junction
temperature Bond wire current limit is 240A. Note that current
limitation arising from heating of the device leds may occur with
some lead mounting arrangements.
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by TJmax, starting TJ = 25°C, L = 0.021mH
RG = 25, IAS = 168A, VGS =10V. Part not recommended for use
above this value .
ISD 168A, di/dt 1410 A/µs, VDD V(BR)DSS, TJ 175°C.
Static @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
s
V(BR)DSS Drain-to-Source Breakdown Volta
g
e 60 ––– ––– V
V(BR)DSS
TJ Breakdown Volta
g
e Temp. Coefficient ––– 0.07 ––– V/°C
RDS(on) Static Drain-to-Source On-Resistance ––– 1.5 2.1 m
VGS(th) Gate Threshold Volta
g
e 2.0 ––– 4.0 V
IDSS Drain-to-Source Leaka
g
e Current ––– ––– 20
––– ––– 250
IGSS Gate-to-Source Forward Leaka
g
e ––– ––– 100
Gate-to-Source Reverse Leaka
g
e ––– ––– -100
RG(int) Internal Gate Resistance ––– 2.1 –––
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
s
g
fs Forward Transconductance 290 ––– ––– S
QgTotal Gate Char
g
e ––– 200 300
Qgs Gate-to-Source Char
g
e ––– 37 –––
Qgd Gate-to-Drain ("Miller") Char
g
e ––– 60 –––
Qsync Total Gate Char
g
e Sync. (Qg - Qgd)––– 140 –––
td(on) Turn-On Delay Time ––– 14 –––
trRise Time ––– 61 –––
td(off) Turn-Off Delay Time ––– 118 –––
tfFall Time ––– 69 –––
Ciss Input Capacitance ––– 8850 –––
Coss Output Capacitance ––– 1007 –––
Crss Reverse Transfer Capacitance ––– 525 –––
Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– 1460 –––
Coss eff. (TR) Effective Output Capacitance (Time Related) ––– 1915 –––
Diode Characteristics
Symbol Parameter Min. Typ. Max. Unit
s
ISContinuous Source Current
(Body Diode)
ISM Pulsed Source Current
(Body Diode)
VSD Diode Forward Volta
g
e ––– ––– 1.3 V
trr Reverse Recovery Time ––– 44 ––– TJ = 25°C VR = 51V,
––– 48 ––– TJ = 125°C IF = 168A
Qrr Reverse Recovery Char
g
e ––– 51 ––– TJ = 25°C di
/
dt = 100A
/
µs
––– 62 ––– TJ = 125°C
IRRM Reverse Recovery Current ––– 2.03 ––– A TJ = 25°C
ton Forward Turn-On Time Intrinsic turn-on time is ne
g
li
g
ible (turn-on is dominated by LS+LD)
Conditions
VDS = 25V, ID = 168A
ID = 168A
VGS = 20V
VGS = -20V
MOSFET symbol
showing the
VDS = 30V
Conditions
VGS = 10V
VGS = 0V
VDS = 50V
ƒ = 1.0MHz (See Fig 5)
VGS = 0V, VDS = 0V to 48V (See Fig 11)
VGS = 0V, VDS = 0V to 48V
TJ = 25°C, IS = 168A, VGS = 0V
integral reverse
p-n junction diode.
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 5mA
VGS = 10V, ID = 168A
VDS = VGS, ID = 250µA
VDS = 60V, VGS = 0V
VDS = 60V, VGS = 0V, TJ = 125°C
ID = 168A
RG = 2.7
VGS = 10V
VDD = 39V
ID = 168A, VDS =0V, VGS = 10V
µA
nA
nC
ns
pF
A
ns
nC
293
1172
––– –––
––– –––
movna'kmo‘ IEZR Rectflhe’
IRFS3006-7PPbF
www.irf.com 3
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature
Fig 2. Typical Output Characteristics
Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
6.0V
5.0V
4.5V
4.0V
BOTTOM 3.5V
60µs PULSE WIDTH
Tj = 25°C
3.5V
234567
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
TJ = 25°C
TJ = 175°C
VDS = 25V
60µs PULSE WIDTH
-60 -40 -20 020 40 60 80 100120140160180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 168A
VGS = 10V
0 40 80 120 160 200 240 280
QG, Total Gate Charge (nC)
0.0
4.0
8.0
12.0
16.0
VGS, Gate-to-Source Voltage (V)
VDS= 48V
VDS= 30V
ID= 168A
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
6.0V
5.0V
4.5V
4.0V
BOTTOM 3.5V
60µs PULSE WIDTH
Tj = 175°C
3.5V
110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
movna'kmo‘ IEZR Rectflhe’ PEHATION IN THIS Tc : 25%: T] : 175‘s /‘/ \\:§X
IRFS3006-7PPbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 10. Drain-to-Source Breakdown Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 11. Typical COSS Stored Energy
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
0.0 0.4 0.8 1.2 1.6 2.0
VSD, Source-to-Drain Voltage (V)
1.0
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
-60 -40 -20 020 40 60 80 100120140160180
TJ , Temperature ( °C )
55
60
65
70
75
80
V(BR)DSS, Drain-to-Source Breakdown Voltage (V)
Id = 5mA
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
200
400
600
800
1000
1200
1400
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 35A
70A
BOTTOM 168A
0 102030405060
VDS, Drain-to-Source Voltage (V)
0.0
0.5
1.0
1.5
2.0
2.5
Energy (µJ)
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
50
100
150
200
250
300
350
ID, Drain Current (A)
Limited By Package
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
Tc = 25°C
Tj = 175°C
Single Pulse
100µsec
1msec
10msec
DC
LIMITED BY PACKAGE
movna'kmo‘ IEZR Rectflhe’ SINGLE PULSE Cyc‘e = 5er pu‘sewldm‘ «av, he Curr // 1; 4 it »~ I I ‘ _ «es 1 Duty Factor D : (1M2 puxsewmm, tav, assummg
IRFS3006-7PPbF
www.irf.com 5
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 14. Typical Avalanche Current vs.Pulsewidth
Fig 15. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
Thermal Response ( Z thJC ) °C/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci i/Ri
Ci= τi/Ri
τ
τC
τ4
τ4
R4
R4Ri (°C/W) τi (sec)
0.0062 0.000005
0.0431 0.000045
0.1462 0.001067
0.2047 0.010195
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
50
100
150
200
250
300
350
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 168A
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
movna'kmo‘ IEZR Rectflhe’
IRFS3006-7PPbF
6www.irf.com
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
Fig. 19 - Typical Stored Charge vs. dif/dtFig. 18 - Typical Recovery Current vs. dif/dt
Fig. 20 - Typical Stored Charge vs. dif/dt
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
VGS(th), Gate threshold Voltage (V)
ID = 250µA
ID = 1.0mA
ID = 1.0A
0200 400 600 800 1000 1200
diF /dt (A/µs)
0
4
8
12
16
20
IRR (A)
IF = 112A
VR = 51V
TJ = 25°C
TJ = 125°C
0200 400 600 800 1000 1200
diF /dt (A/µs)
0
4
8
12
16
20
IRR (A)
IF = 168A
VR = 51V
TJ = 25°C
TJ = 125°C
0200 400 600 800 1000 1200
diF /dt (A/µs)
0
100
200
300
400
500
600
QRR (A)
IF = 112A
VR = 51V
TJ = 25°C
TJ = 125°C
0200 400 600 800 1000 1200
diF /dt (A/µs)
0
100
200
300
400
500
600
QRR (A)
IF = 168A
VR = 51V
TJ = 25°C
TJ = 125°C
Internationoi Ion Rectifier ii :{éufii T T Ti 2°) @ vw Fig 22a. Unciamped Inducnve Test Circuii h##vvwi 1E ,, L Fig 23a. SwiIching Time Tesi Circuik Fig 24a. Gaie Charge Test Circun www.irf.com has i " Fig 22b. Unclamped Induciive W 1+.'4+~—>~—»' ' figs! 09:2 09:1 0956! Fig 24b. Gaie Charge Wa
IRFS3006-7PPbF
www.irf.com 7
Fig 23a. Switching Time Test Circuit Fig 23b. Switching Time Waveforms
Fig 22b. Unclamped Inductive Waveforms
Fig 22a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
Inductor Current
D.U.T. VDS
ID
IG
3mA
VGS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
VGS
1111111 :1 1m 11 1(11 1 7 A DZPak - 7 Pin Part Marking Information |nlernofiono1 Ion Rectifier S Y D MENSWNS N M U E M1LL1METERS 1NC‘1ES T E MW MAX 111w 114x 5 A 4 08 L 53 150 1991 A1 7 2‘44 7 D1U b D 51 D 99 U20 U36 b1 0 51 O 89 02C 032 5 C I} 35 O 74 [‘15 D29 C1 0 35 U 55 C115 023 5 L22 1 14 1 65 045 065 D a 35 9 55 35C 55D D1 E SE 7 27C ‘1 9'55 10137 380 420 3/1 E1 5 22 7 245 A e 1 27 BSC .050 35C H 14 (.1' 15 88 575 625 1 1 75 7 79 07c 11: L1 7 1 68 7 086 4 L2 7 1 78 7 070 L3 925 BBC 010 25c L4 4 78 5 28 188 205 111111111111 1111111111111 15 111 1911 1111.11.11 1 1111111111 .11 W1 11 1111111111 1111111 1111111111111 111 1115; 1111111111 111 11111111 11 111 1111111 A1811 111 1111111 11111111 111111 1111111111 1 11 11 1 11 1 11111 1 1 1 11 11 1mm 11 1111 11111 1 1 1111111 M111 11 m 11w 1072925 PAW 111115511 1111111 [msggbéwflfzr‘zamsrw 11111 W;;gmg;\ 11121111111 mSEVBLED 0N M10212!) Lo“ M ”A DAVE can: 11 11m1111111111 - 7122111: 1111 11111111 an 11 , g 1111 1 1111 -1- 11 15511111 to was H on 11.11 111111 11191111111111 1mm“ / 11111111 LOCO Flinn pm: CJDE M l1: 1151:1111 111M111 15501511 51 11 PwnDugr 11o1111t 111 1111 YEAR 1 z 1111 1: 1:2 1: 15291511 s17: can: W H www.irf
IRFS3006-7PPbF
8www.irf.com
D2Pak - 7 Pin Part Marking Information
D2Pak (TO-263CB) 7 Long Leads Package Outline
Dimensions are shown in milimeters (inches)
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
Internationot Ion Rectifier NOiES‘ ’APE & REEL, ,ABELLNG t ”FE AND Rm 2 LABELL NE (REEL AND gHiRRiNG BAG) \ r H REEL NE W ‘NCH D‘AMUER 2,t CJJT PHRT NUMBER LEAR CODET tRFXXXXgTRbW 22 GUST PART NUMBER [TEXT CODE) tRFXXXXSTRLr‘iP t 2 EACH REEL CoNTAiNiNG 5m UEUCES t 3 23 TR PART NUMBE. iRExxxxstRLJP ’HFRF SHAH RF A MtNtMUM (W 47 SFAtFD PGCKFTS 2,4 OUANTtTY CDNTAtNED N THE LEADE?’ AND A MtNWUtt or t5 2 5 VENDO; CODE, TR SEALED HUCNETS N THE tHAtLLR 2C Lo’ CODE PEEL STRENCTH MUST CUNFORM To THE SPEC, No 27 DATE CODE 7179667 PART ORtENTATtON SHALL BE as SHOWN BELOW REEL MAY CDNTAtN A MAXWUM OF TWO UNiuUE LoT CODE/DATE CODE CCMBtNATONS REvNoRRE) REELS MAY CDNTAtN A MAXtMLtM OF THREE UNTCUE Lo :oDE/CATE CODE COMBNATtONS HOWEVER TEE LOT CODES AND DATE CODES WtTH THETR RESPECTNE QUANTTTTES SHALL APPEAR oN THE BAR CODE LABEL FDR TEE AFFECT) International IEER Rectifier
IRFS3006-7PPbF
www.irf.com 9
D2Pak - 7 Pin Tape and Reel
Dimensions are shown in milimeters (inches)
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/2008
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Products related to this Datasheet

MOSFET N-CH 60V 240A D2PAK7
MOSFET N-CH 60V 240A D2PAK7
MOSFET N-CH 60V 240A D2PAK-7
MOSFET N-CH 60V 240A D2PAK7