M24SR04-G, M24SR04-Y Datasheet by STMicroelectronics

View All Related Products | Download PDF Datasheet
This is information on a product in full production.
September 2017 DocID024754 Rev 16 1/89
M24SR04-Y
M24SR04-G
Dynamic NFC/RFID tag IC with 4-Kbit EEPROM,
NFC Forum Type 4 Tag and I²C interface
Datasheet - production data
Features
I2C interface
Two-wire I2C serial interface supports
1 MHz protocol
Single supply voltage:
2.7 V to 5.5 V for grade Y
2.4 V to 5.5 V for grade G (Limited
temperature range -25 to 85 °C)
Contactless interface
NFC Forum Type 4 Tag
ISO/IEC 14443 Type A
106 Kbps data rate
Internal tuning capacitance: 25 pF
Memory
512-byte (4-kbit) EEPROM
Support of NDEF data structure
Data retention: 200 years
Write cycle endurance:
1 million Write cycles at 25 °C
600k Write cycles at 85 °C
Read up to 246 bytes in a single command
Write up to 246 bytes in a single command
7 bytes unique identifier (UID)
128 bits passwords protection
Package
8-lead small-outline package (SO8)
ECOPACK2®
TSSOP8 ECOPACK2®
UFDFPN8 ECOPACK2®
Digital pad
GPO: configurable General Purpose Output
RF disable: activation/deactivation of RF
commands
Temperature range
From - 40 °C up to 85 °C
Description
M24SR04 belongs to the ST25 family which
includes all STMicroelectronics NFC/RFID tag and
reader products.
The M24SR04 devices is a dynamic NFC/RFID
tag IC with a dual interface. It embeds an
EEPROM memory. It can be operated from an I2C
interface or by a 13.56 MHz RFID reader or an
NFC phone.
The I2C interface uses a two-wire serial interface,
consisting of a bidirectional data line and a clock
line. It behaves as a slave in the I2C protocol.
The RF protocol is compatible with ISO/IEC
14443 Type A and NFC Forum Type 4 Tag.
SO8
(MN)
UFDFPN8
(MC)
TSSOP8
(DW)
Wafer
www.st.com
Contents M24SR04-Y M24SR04-G
2/89 DocID024754 Rev 16
Contents
1 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 Functional modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.1 I2C mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.2 Tag mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.3 Dual interface mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Serial clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Serial data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Antenna coil (AC0, AC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Ground (VSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.1 Operating supply voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.3 Device reset in I²C mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.4 Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 RF disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 General purpose output (GPO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7.1 Session Open configuration (GPO field = 0xX1 or 0x1X) . . . . . . . . . . . 14
2.7.2 WIP Writing in Progress configuration (GPO field = 0xX2 or 0x2X) . . . 15
2.7.3 I2C answer ready configuration (GPO field = 0xX3) . . . . . . . . . . . . . . . 16
2.7.4 MIP NDEF Message writing in Progress configuration
(GPO field = 0x3X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7.5 INT Interrupt configuration (GPO field = 0xX4 or 0x4X) . . . . . . . . . . . . 18
2.7.6 State Control configuration (GPO field = 0xX5 or 0x5X) . . . . . . . . . . . . 19
2.7.7 RF busy configuration (GPO field = 0x6X) . . . . . . . . . . . . . . . . . . . . . . . 20
3 M24SR04 memory management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Memory structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.1 File identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 CC file layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 NDEF file layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4 System file layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Read and write access rights to the memory . . . . . . . . . . . . . . . . . . . . . . 25
DocID024754 Rev 16 3/89
M24SR04-Y M24SR04-G Contents
5
3.2.1 State of the Read and Write access rights . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Changing the read access right to NDEF files . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Changing the write access right to NDEF files . . . . . . . . . . . . . . . . . . . 27
3.3 Access right life time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 NDEF file passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 I2C password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.1 I²C password and I²C protect field of the System file . . . . . . . . . . . . . . . 28
4 Communication mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1 Master and slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 M24SR04 session mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 RF token . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 I2C token . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5 I²C and RF command sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1 Structure of the command sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 I-Block format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.1 C-APDU: payload format of a command . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 R-APDU: payload format of a response . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 R-Block format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 S-Block format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 CRC of the I2C and RF frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.6 NFC Forum Type 4 Tag protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.6.1 Commands set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.6.2 Status and error codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.6.3 NDEF Tag Application Select command . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6.4 Capability Container Select command . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6.5 NDEF Select command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.6.6 System File Select command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.6.7 ReadBinary command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.6.8 UpdateBinary command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.7 ISO/IEC 7816-4 commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.7.1 Verify command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.7.2 Change Reference Data command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.7.3 Enable Verification Requirement command . . . . . . . . . . . . . . . . . . . . . . 45
5.7.4 Disable Verification Requirement command . . . . . . . . . . . . . . . . . . . . . 46
Contents M24SR04-Y M24SR04-G
4/89 DocID024754 Rev 16
5.8 ST Proprietary command set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.8.1 ExtendedReadBinary command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.8.2 EnablePermanentState command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.8.3 DisablePermanentState command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.8.4 UpdateFileType command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.8.5 SendInterrupt command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.8.6 StateControl command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.9 Specific RF command set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.9.1 Anticollision command set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.9.2 RATS command and ATS response . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.9.3 PPS command & response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.10 Specific I²C command set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.10.1 GetI2Csession command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.10.2 KillRFsession command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6 RF device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1 Anticollision and Device Activation command set for the RF interface . . 56
6.2 Open an RFsession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Close an RFsession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4 Applicative command set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7 I2C device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.1 I2C communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.4 I²C token release sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.5 I²C timeout on clock period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.6 Acknowledge bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.7 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.8 I²C device address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.9 I²C frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.9.1 Example of I²C frame commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.10 Open an I²C session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.11 Close the I²C session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
DocID024754 Rev 16 5/89
M24SR04-Y M24SR04-G Contents
5
8 Functional procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.1 Selection of an NDEF message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2 Reading of an NDEF message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.3 Reading a locked NDEF file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.4 Locking an NDEF file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.5 Unlocking an NDEF file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.6 Reaching the read-only state for an NDEF file . . . . . . . . . . . . . . . . . . . . . 64
8.7 Changing an NDEF password procedure . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.8 Changing a File type Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.9 Updating a NDEF file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9 UID: Unique identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
10 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
11 I2C DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
11.1 I2C timing measurement condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
12 GPO parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
13 Write cycle definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
14 RF electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
15 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
15.1 SO8N package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
15.2 TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
15.3 UFDFPN8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
16 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
17 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
List of tables M24SR04-Y M24SR04-G
6/89 DocID024754 Rev 16
List of tables
Table 1. Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2. Functional mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 3. File identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 4. CC file layout for 1 NDEF file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 5. NDEF file layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 6. Field list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 7. Details about I2C watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 8. Details about the GPO field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 9. Details about the RF Session field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 10. Details about the ST reserved field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 11. Details about the RF enable field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 12. Read access right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 13. Write access right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 14. RF and I²C command sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 15. I-Block format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 16. PCB field of the I-Block format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 17. C-APDU format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 18. R-APDU format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 19. R-Block format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 20. R-Block detailed format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 21. S-Block format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 22. S-Block detailed format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 23. Command set overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 24. Status code of the M24SR04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 25. Error code of the M24SR04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 26. C-APDU of the NDEF Tag Application Select command . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 27. R-APDU of the NDEF Tag Application Select command . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 28. C-APDU of the Capability Container Select command. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 29. R-APDU of the Capability Container Select command. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 30. C-APDU of the NDEF Select command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 31. R-APDU of the NDEF Select command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 32. C-APDU of the System File Select command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 33. R-APDU of the System File Select command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 34. C-APDU of the ReadBinary command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 35. R-APDU of the ReadBinary command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 36. C-APDU of the UpdateBinary command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 37. R-APDU of the UpdateBinary command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 38. Verify command format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 39. R-APDU of the Verify command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 40. Change reference data command format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 41. R-APDU of the Change Reference Data command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 42. Enable Verification Requirement command format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 43. R-APDU of the Enable Verification Requirement command. . . . . . . . . . . . . . . . . . . . . . . . 46
Table 44. Disable Verification Requirement command format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 45. R-APDU of the Disable Verification Requirement command . . . . . . . . . . . . . . . . . . . . . . . 47
Table 46. C-APDU of the ExtendedReadBinary command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 47. R-APDU of the ExtendedReadBinary command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 48. EnablePermanentState command format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
DocID024754 Rev 16 7/89
M24SR04-Y M24SR04-G List of tables
7
Table 49. R-APDU table of the EnablePermanentState command . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 50. DisablePermanentState command format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 51. R-APDU of the DisablePermanentState command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 52. UpdateFileType command format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 53. R-APDU of the UpdateFileType command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 54. SendInterrupt command format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 55. R-APDU of the SendInterrupt command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 56. StateControl command format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 57. R-APDU of the StateControl command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 58. Commands issues by the RF host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 59. RATS command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 60. Conversion from FDSI to FSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 61. ATS response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 62. PPS command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 63. Ascending and descending data rate coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 64. PPS response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 65. Specific I²C commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 66. GetI2Csession command format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 67. KillRFsession command format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 68. I2C device address format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 69. I2C frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 70. I2C host to M24SR04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 71. M24SR04 to I2C host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 72. UID format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 73. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 74. I2C operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 75. AC test measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 76. Input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 77. I2C DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 78. I2C AC characteristics (400 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 79. I2C AC characteristics (1 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 80. Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 81. GPO timings measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 82. Write cycle definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 83. Default operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 84. RF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 85. SO8N - 8-lead plastic small outline, 150 mils body width,
package data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 86. TSSOP8 – 8-lead thin shrink small outline, 3 x 6.4 mm, 0.65 mm pitch,
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 87. UFDFPN8 - 8- lead, 2 x 3 mm, 0.5 mm pitch ultra thin profile fine pitch
dual flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 88. Ordering information scheme for packaged devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 89. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
List of figures M24SR04-Y M24SR04-G
8/89 DocID024754 Rev 16
List of figures
Figure 1. M24SR04 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2. 8-pin package connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 3. GPO configured as Session Open (GPO field = 0xX1 or 0x1X) . . . . . . . . . . . . . . . . . . . . . 14
Figure 4. GPO configured as WIP (GPO field = 0xX2 or 0x2X). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 5. GPO configured as I2C answer ready (GPO field = 0xX3) . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 6. GPO configured as MIP (GPO field = 0x3X). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 7. GPO configured as INT (GPO field = 0xX4 or 0x4X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 8. GPO configured as State Control (GPO field = 0xX5 or 0x5X). . . . . . . . . . . . . . . . . . . . . . 19
Figure 9. GPO configured as RF busy (GPO field = 0x6X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 10. Changing the read access right to an NDEF file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 11. Changing the write access right to an NDEF file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 12. Command and response exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 13. I²C token release sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 14. NDEF tag Application Select command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 15. AC test measurement I/O waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 16. I2C AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 17. Maximum Rbus value with fC = 400 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 18. Maximum Rbus value with fC = 1 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 19. I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 20. SO8N - 8-lead plastic small outline, 150 mils body width, package outline . . . . . . . . . . . . 79
Figure 21. SO8N - 8-lead plastic small outline, 150 mils bosy width,
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 22. TSSOP8 – 8-lead thin shrink small outline, 3 x 6.4 mm, 0.65 mm pitch,
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 23. UFDFPN8 - 8-lead, 2 x 3 mm, 0.5 mm pitch ultra thin profile fine pitch
dual flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
DocID024754 Rev 16 9/89
M24SR04-Y M24SR04-G Functional description
20
1 Functional description
The M24SR04 device is a dynamic NFC/RFID tag that can be accessed either from the I2C
or the RF interface. The RF and I2C host can read or write to the same memory, that is why
only one host can communicate at a time with the M24SR04. The management of the
interface selection is controlled by the M24SR04 device itself.
The RF interface is based on the ISO/IEC 14443 Type A standard. The M24SR04 is
compatible with the NFC Forum Type 4 Tag specifications and supports all corresponding
commands.
The I2C interface uses a two-wire serial interface consisting of a bidirectional data line and a
clock line. The devices carry a built-in 4-bit device type identifier code in accordance with
the I²C bus definition.
The device behaves as a slave in the I2C protocol.
Figure 1 displays the block diagram of the M24SR04 device.
Figure 1. M24SR04 block diagram
069
6XSSO\YROWDJH
IRU,&LQWHUIDFH
5)LQWHUIDFH
EDVHGRQ
,62,(&
7\SH$
VWDQGDUG
,&LQWHUIDFH
9±9
9&&
$&
$&
6&/
*32
6'$
*1'
3RZHU
PDQDJHPHQW
XQLW
h/ΘƐLJƐƚĞŵ
ĂƌĞĂ
hƐĞƌŵĞŵŽƌLJ
$QDORJ)URQWHQG
EDVHGRQ
,62,(&
7\SH$VWDQGDUG
,QWHUQDOWXQLQJ
FDSDFLWDQFH
1)&)RUXP
7\SH7DJ
SURWRFRO
1)&B,&
LQWHUIDFH
'LJLWDOXQLW
5)
GLVDEOH
_|__|__|__J .L,L.L.L
Functional description M24SR04-Y M24SR04-G
10/89 DocID024754 Rev 16
Figure 2. 8-pin package connections
1. See Package mechanical data section for package dimensions, and how to identify pin 1.
1.1 Functional modes
The M24SR04 has two functional modes available. The difference between the modes lies
in the power supply source (see Table 2).
1.1.1 I2C mode
M24SR04 is powered by VCC. The I2C interface is connected to the M24SR04. The I2C host
can communicate with the M24SR04 device.
1.1.2 Tag mode
The M24SR04 is supplied by the RF field and can communicate with an RF host (RFID
reader or an NFC phone). The User memory can only be accessed by the RF commands.
Table 1. Signal names
Signal name Function Direction
SDA Serial data I/O
SCL Serial clock Input
AC0, AC1 Antenna coils -
VCC Supply voltage -
VSS Ground -
GPO Interrupt output (1)
1. An external pull-up > 4.7 k is required.
Open drain output
RF disable Disable the RF communication (2)
2. An external pull-down is required when the voltage on Vcc is above its POR level.
Input
069
6'$
6&/
*32
$&
$&
966
5)GLVDEOH 9&&
Table 2. Functional mode
Mode Supply source Comments
I2C mode Vcc The I2C interface is available
Tag mode RF field only The 2C interface is disconnected
Dual interface mode RF field or Vcc Both I2C and RF interfaces are available
DocID024754 Rev 16 11/89
M24SR04-Y M24SR04-G Functional description
20
1.1.3 Dual interface mode
Both interfaces, RF and I2C, are connected to the M24SR04 and both RF or I2C host can
communicate with the M24SR04 device. The power supply and the access management
are carried out by the M24SR04 itself. For further details, please refer to the token
mechanism chapter.
Signal descriptions M24SR04-Y M24SR04-G
12/89 DocID024754 Rev 16
2 Signal descriptions
2.1 Serial clock (SCL)
This input signal is used to strobe all data in and out of the device. In applications where this
signal is used by slave devices to synchronize the bus to a slower clock, the bus master
must have an open drain output, and a pull-up resistor must be connected from Serial clock
(SCL) to VCC. (Figure 17 indicates how the value of the pull-up resistor can be calculated).
In most applications, though, this method of synchronization is not employed, and so the
pull-up resistor is not necessary, provided that the bus master has a push-pull (rather than
open drain) output.
2.2 Serial data (SDA)
This bidirectional signal is used to transfer data in or out of the device. It is an open drain
output that may be wire-OR'ed with other open drain or open collector signals on the bus. A
pull-up resistor must be connected from Serial data (SDA) to VCC. (Figure 17 indicates how
the value of the pull-up resistor can be calculated).
2.3 Antenna coil (AC0, AC1)
These inputs are used to connect the device to an external coil exclusively. It is advised not
to connect any other DC or AC path to AC0 or AC1.
When correctly tuned, the coil is used to access the device using NFC Forum Type 4
commands.
2.4 Ground (VSS)
VSS, when connected, is the reference for the VCC supply voltage for all pads, even AC0
and AC1.
2.5 Supply voltage (VCC)
This pin can be connected to an external DC supply voltage.
Note: An internal voltage regulator allows the external voltage applied on VCC to supply the
M24SR04.
2.5.1 Operating supply voltage VCC
Prior to selecting the M24SR04 and issuing instructions to it, a valid and stable VCC voltage
within the specified [VCC(min), VCC(max)] range must be applied. To maintain a stable DC
supply voltage, it is recommended to decouple the VCC line with suitable capacitors (usually
of the order of 10 nF and 100 pF) close to the VCC/VSS package pins.
This voltage must remain stable and valid until the end of the transmission of the instruction
and, for a writing instruction (UpdateBinary, ChangeReferenceData,
DocID024754 Rev 16 13/89
M24SR04-Y M24SR04-G Signal descriptions
20
EnableVerificationRequirement, DisableVerificationRequirement, EnablePermanentState,
DisablePermanentState, until the completion of the internal I²C write cycle (tW).
2.5.2 Power-up conditions
When the power supply is turned on, VCC rises from VSS to VCC. The VCC rise time must not
vary faster than 1V/µs.
2.5.3 Device reset in I²C mode
In order to prevent inadvertent write operations during power-up, a power-on reset (POR)
circuit is included. At power-up (continuous rise of VCC), the M24SR04 does not respond to
any I²C instruction until VCC has reached the power-on reset threshold voltage (this
threshold is lower than the minimum VCC operating voltage defined). When VCC passes
over the POR threshold, the device is reset and enters the Standby power mode. However,
the device must not be accessed until VCC has reached a valid and stable VCC voltage
within the specified [VCC(min), VCC(max)] range.
In a similar way, during power-down (continuous decrease in VCC), as soon as VCC drops
below the power-on reset threshold voltage, the M24SR04 stops responding to any
instruction sent to it.
2.5.4 Power-down conditions
During power-down (continuous decay of VCC), the M24SR04 must be in Standby power
mode (mode reached after decoding a Stop condition, assuming that there is no internal
operation in progress).
2.6 RF disable
This input signal is used to disable the RF communication. When the voltage on the VCC pin
is below the POR level or not connected, an internal pull-down resistor is connected on this
pad. Thus, the RF disable pad is maintained to the low level and the RF analog front end is
activated. When the voltage on the VCC pin is higher than the POR level, the I²C host shall
set this pin to enable or disable the RF communication. In Dual interface mode, RF disable
must not be left floating.
2.7 General purpose output (GPO)
The GPO pad is an open drain pad and a external pull-up resistor shall be connected to it.
This pad is a configurable output signal. On delivery, GPO is configured as Session opened.
Its behavior is consistent with the I2C or RF session activated and with the mode chosen by
the user. The GPO pad is enable when an RF or an I2C session is open. When neither an
RF nor an I2C session is open, the GPO is high impedance.
Signal descriptions M24SR04-Y M24SR04-G
14/89 DocID024754 Rev 16
The user can select one of these configurations(1):
SessionOpen: an RF or I2C session is ongoing.
MIP (NDEF Message updating In Progress): the RF host is writing an NDEF length
different from 0x0000. This mode can be used to detect when the RF host changes the
NDEF message as defined by the NFC Forum.
WIP (Writing In Progress): the M24SR04 is executing a writing operation.
INT (interrupt): the I2C or RF host can force the M24SR04 to send a negative pulse on
the GPO pin.
I2C ready response: an I2C response is ready to be read by the I²C host.
State mode: the I2C or RF host can control the state of the GPO pad during the RF
session.
RF busy: an RF host is communicating with the M24SR04.
2.7.1 Session Open configuration (GPO field = 0xX1 or 0x1X)
When the GPO is configured as "Session Open", it goes to the Low state when an RF or I2C
session is ongoing (see Figure 3).
An RF session is taken when M24SR04 receives a valid Select Application. The session is
released after M24SR04 has received a valid Deselect command, if M24SR04 has received
a Kill RF session command in I2C or when the RF field became OFF.
An I2C session is taken when M24SR04 receives a valid Get session command or a valid
Kill RF session command. The session is released after M24SR04 has received I2C token
release sequence or after a Power Off.
GPO is driven low after a delay (1) or (3) when the session is open.
GPO is released after a delay (2) or (4) when the session is released.
Figure 3. GPO configured as Session Open (GPO field = 0xX1 or 0x1X)
1. CmdEOFtoGPlow (RF command End of frame to GPORF Session pad low)
2. CmdEOFtoGPHZ (RF command End of frame to GPORF Session pad HZ)
3. CmdSTPtoGPlow (I2C command stop to GPO low)
4. AnswerlbLBtoGPHZ (I2C answer last bit of last byte to GPO HZ)
1. See Table 81 for more details.
D^ϯϬϳϴϰsϮ
Z&^ĞƐƐŝŽŶ /Ϯ^ĞƐƐŝŽŶ Z&
^ĞƐƐŝŽŶ
^ĞƐƐŝŽŶ
'WKĂƐ^ĞƐƐŝŽŶKƉĞŶ
<ŝůůƐĞƐƐŝŽŶŽƌ
'ĞƚƐĞƐƐŝŽŶ
ŶƚŝĐŽůůŝƐŝŽŶΘ
E&ƐĞůĞĐƚ
ĞƐĞůĞĐƚ
ĞƐĞůĞĐƚ
;ϯͿ ;ϰͿ
;ϭͿ ;ϮͿ
DocID024754 Rev 16 15/89
M24SR04-Y M24SR04-G Signal descriptions
20
2.7.2 WIP Writing in Progress configuration (GPO field = 0xX2 or 0x2X)
When the GPO is configured as "WIP", it goes to the Low state during an I2C or RF writing
operation.
During an RF or I2C session, when M24SR04 updates a file, GPO is driven low after a delay
(1) or (3) following the beginning of the correspondent UpdateBinary command execution.
GPO will remain low during the writing time (2) or (4), before being released.
Figure 4. GPO configured as WIP (GPO field = 0xX2 or 0x2X)
1. CmdSTPtoGPlow (I2C Command Stop to GPO low)
2. Writing time duration
3. CmdEOFtoGPlow (RF Command End of frame to GPO low)
4. Writing time duration
D^ϯϬϳϴϲsϯ
hƉĚĂƚĞ
ĐŽŵŵĂŶĚ
ŶLJŽƚŚĞƌ
ĐŽŵŵĂŶĚ
;ϮͿŽƌ;ϰͿ
Z&Žƌ/Ϯ
ĐŚĂŶŶĞů
'WKĂƐt/W
ŶĚŽĨǁƌŝƚŝŶŐ
ŽƉĞƌĂƚŝŽŶ
;ϭͿ
Žƌ
;ϯͿ
Signal descriptions M24SR04-Y M24SR04-G
16/89 DocID024754 Rev 16
2.7.3 I2C answer ready configuration (GPO field = 0xX3)
When the GPO is configured as I2C answer ready, it goes to the Low state when the
M24SR04 has finished to treat the I2C command and is ready to send the I2C response.
During an I2C session, after receiving a valid I2C command, GPO pin is driven low after a
delay when M24SR04 is ready to deliver a response on the I2C bus.
GPO is released when M24SR04 receives a new command.
Figure 5. GPO configured as I2C answer ready (GPO field = 0xX3)
D^ϯϬϳϴϴsϰ
KƉĞŶ
^ĞƐƐŝŽŶ
/ϸĐŚĂŶŶĞů
'WKĂƐ/ϸ
ĂŶƐǁĞƌƌĞĂĚLJ
ŶLJ/ϸ
ĐŽŵŵĂŶĚ
DϮϰ^Zdždž
ƌĞƐƉŽŶƐĞ
ŶLJ/ϸ
ĐŽŵŵĂŶĚ
DϮϰ^Zdždž
ƌĞƐƉŽŶƐĞ
ŶLJ/ϸ
ĐŽŵŵĂŶĚ
DϮϰ^Zdždž
ƌĞƐƉŽŶƐĞ
DocID024754 Rev 16 17/89
M24SR04-Y M24SR04-G Signal descriptions
20
2.7.4 MIP NDEF Message writing in Progress configuration
(GPO field = 0x3X)
When the GPO is configured as MIP, its state goes to the low state when the RF host writes
the NDEF length to another value than 0x0000.
During an RF session, when M24SR04 changes an NDEF file and updates the NDEF length
with a value different from 0x0000, GPO is driven low after a delay (1) following the
beginning of the correspondent UpdateBinary command execution.
GPO will remain low during the writing time (2), before being released.
Figure 6. GPO configured as MIP (GPO field = 0x3X)
1. CmdEOFtoGPlow (RF command End of frame to GPO low)
2. Writing time duration
D^ϯϬϳϴϱsϯ
ŶLJŽƚŚĞƌ
ĐŽŵŵĂŶĚ
hƉĚĂƚĞƚŚĞE&
ůĞŶŐƚŚ͊сϬdžϬϬϬϬ
Z&ĐŚĂŶŶĞů
'WKĂƐD/W
DϮϰ^Zdždž
ƌĞƐƉŽŶƐĞ
;ϭͿ
;ϮͿ
Signal descriptions M24SR04-Y M24SR04-G
18/89 DocID024754 Rev 16
2.7.5 INT Interrupt configuration (GPO field = 0xX4 or 0x4X)
The I2C or RF host can send a negative pulse on the GPO pad. The GPO pad goes to the
low state at the end of the command and goes to the high state at the end of the M24SR04
response.
During an RF or I2C session, when M24SR04 receives a valid Interrupt command,
M24SR04 GPO pin is driven low after (1) or (3) for a duration of (4) in RF, or after
responding in I2C (2). Then GPO pin is released.
Figure 7. GPO configured as INT (GPO field = 0xX4 or 0x4X)
1. CmdSTPtoGPlow (I2C command Stop to GPO low)
2. After NewCmdlbFB (new I2C command last bit of first byte)
or
after AnswerlbFB (I2C answer last bit of first byte)
3. CmdEOFtoGPlow (RF command End of frame to GPO low)
4. GPO pulse duration
D^ϯϬϳϴϳsϯ
^ĞŶĚ
/ŶƚĞƌƌƵƉƚ
'WKĂƐ/Ed
ŶLJŽƚŚĞƌ
ŽƉĞƌĂƚŝŽŶ
Z&Žƌ/ϸ
ĐŚĂŶŶĞů
DϮϰ^Zdždž
ƌĞƐƉŽŶƐĞ
;ϭͿ
Žƌ
;ϯͿ ;ϮͿ
;ϰͿ
DocID024754 Rev 16 19/89
M24SR04-Y M24SR04-G Signal descriptions
20
2.7.6 State Control configuration (GPO field = 0xX5 or 0x5X)
When the GPO is configured as State Control, the I2C or RF host can control the state of the
GPO by sending a dedicated command.
During an RF or I2C session, the M24SR04 can control the GPO pin. After receiving a valid
Set GPO command, GPO pin is driven low after a delay (1) or (3). GPO will be released
after a valid Reset command or after a Power off or upon closing the RF session.
Figure 8. GPO configured as State Control (GPO field = 0xX5 or 0x5X)
1. CmdSTPtoGPlow (I2C Set GPO command Stop to GPO low)
2. CmdSTPtoGPHZ (I2C Reset GPO command Stop to GPO HZ)
3. CmdEOFtoGPlow (RF Set GPO command End of frame to GPO low)
4. CmdEOFtoGPHZ (RF Reset GPO command End of frame to GPO HZ)
069
5HVHW*32
FRPPDQG
$Q\RWKHU
FRPPDQG
6HW*32
FRPPDQG
5)RU,ð&
FKDQQHO
*32DV
6WDWH&RQWURO

RU


RU

Signal descriptions M24SR04-Y M24SR04-G
20/89 DocID024754 Rev 16
2.7.7 RF busy configuration (GPO field = 0x6X)
When the GPO is configured as RF busy, the GPO goes to the low state when the
M24SR04 is processing an RF command or when an RFsession is ongoing.
When an RF field is present, GPO is driven low after a delay (1) when M24SR04 detects the
first command. If the RF session is ongoing and M24SR04 receives a not-supported
command, GPO remains low. It will be released only at the end of the RF session, after (2).
Figure 9. GPO configured as RF busy (GPO field = 0x6X)
1. CmdSOFtoGPlow (RF command Start of frame to GPO low)
2. CmdEOFtoGPHZ (RF command End of frame to GPO HZ)
D^ϯϬϳϵϬsϯ
Z&ĐŽŵŵĂŶĚ
ŶŽƚƐƵƉƉŽƌƚĞĚ
^ĞŶƐZĞƋΘ
^ĞŶƐZĞƐ
Z&
ĐŽŵŵĂŶĚ
Z&ĐŚĂŶŶĞů
'WKĂƐZ&ďƵƐLJ
^;^Ϳ
;ϭͿ ;ϮͿ ;ϭͿ ;ϮͿ
DocID024754 Rev 16 21/89
M24SR04-Y M24SR04-G M24SR04 memory management
28
3 M24SR04 memory management
3.1 Memory structure
The M24SR04 supports the NDEF Tag Application as defined in the NFC Forum Type 4
Tag. The M24SR04 is composed of three files:
One Capability Container file
One NDEF file
One System file: this is an ST-proprietary file
The System file contains some information on the configuration of the M24SR04 device.
The CC file gives some information about the M24SR04 itself and the NDEF file. The NDEF
file contains the User data.
3.1.1 File identifier
The file identifier is the value used in the Select command to select a file.
3.1.2 CC file layout
The CC file gives some information about the M24SR04 and the NDEF file. This file is a
read-only file for the RF or I²C host and cannot be modified by issuing a write command.
The T field, Read Access and Write Access fields can be changed by the RF or I²C host by
issuing a specific process (refer to Section 8: Functional procedures).
Table 3. File identifier
File identifier Meaning
0xE101 System file
0xE103 CC file
0x0001 NDEF file
M24SR04 memory management M24SR04-Y M24SR04-G
22/89 DocID024754 Rev 16
3.1.3 NDEF file layout
The NDEF file contains the NDEF message which contains the User data. The RF host or
the I²C host can read and write data inside the file. The first two bytes named NDEF
Message Length define the size of the NDEF message. The NDEF Message Length shall
be managed by the application and the M24SR04 device does not check if its value is
relevant vs the data written by the RF or I²C host. The M24SR04 device uses the NDEF
Message Length, e. g. the standard read can be processed only inside the NDEF message;
otherwise, the M24SR04 device returns an error code. For more details about the read
command, refer to Section 5.6.7: ReadBinary command.
Table 4. CC file layout for 1 NDEF file
File offset Meaning Value Comments
0x0000 Number of bytes of CC file 0x000F 15 bytes
0x0002 Mapping version(1)
1. According to the reader.
0x20 or 0x10 V 2.0 or V 1.0
0x0003 Maximum number of bytes that can be read 0x00F6 246 bytes
0x0005 Maximum number of bytes that can be written 0x00F6 246 bytes
0x0007
NDEF file control TLV
0x04 (2)
2. Delivery state.
T field
0x0008 0x06 L field
0x0009 0x0001 FileID
0x000B 0x0200 Maximum NDEF
file size
0x000D 0x00 (2) Read access
0x000E 0x00 (2) Write access
DocID024754 Rev 16 23/89
M24SR04-Y M24SR04-G M24SR04 memory management
28
3.1.4 System file layout
The system file specifies the configuration of the M24SR04. Table 6 lists the different fields.
Table 5. NDEF file layout
File offset Byte 0 Byte 1 Byte 2 Byte 3
0x0000 NDEF message length User data User data
0x0004 User data User data User data User data
... ... ... ... ...
... ... ... ... ...
... ... ... ... ...
0x01FC ... ... ... User data
Table 6. Field list
File offset Field name Number
of bytes Read access Write access Delivery state (1)
1. The delivery state for all passwords = 0x00000000000000000000000000000000.
0x0000 Length system
file 2 I²C or RF - 0x0012
0x0002 I²C protect 1 I²C or RF I²C (2)
2. The access is granted when the field I²C protect is set to the state Unprotected or when the right I²C
password was correctly received (see Section 3.5: I2C password).
0x01
0x0003 I²C watchdog 1 I²C or RF I²C (2) 0x00
0x0004 GPO 1 I²C or RF I²C (2) 0x11
0x0005 ST reserved 1 I²C or RF I²C (2) 0x00
0x0006 RF enable 1 I²C or RF I²C (2) 0x xxxx xxx1(3)
3. Refer Table 11.
0x0007 NDEF File
number (RFU) 1 I²C or RF none 0x00
0x0008 UID 7 I²C or RF none 0x0286 xx xx xx xx xx
0x000F Memory Size 2 I²C or RF none 0x01FF
0x0011 Product Code 1 I²C or RF none 0x86 or 0x8E
Table 7. Details about I2C watchdog
File offset b7- b0
0x0003
The “I2C Watchdog” ensures the I2C host will not keep the session open, while
there is no more activity on the I2C bus (between the stop bit of the previous
transaction and the start bit of the next one)
0x00 (default value): the Watchdog is off
Other values: If programmed to a non null value N, the Watchdog is enabled
and counts N*30 ms (30 ms is approximate) before releasing the I2C session.
M24SR04 memory management M24SR04-Y M24SR04-G
24/89 DocID024754 Rev 16
Table 8. Details about the GPO field
File offset b7 b6-b4 b3 b2-b0
0x0004
RFU
When an RF session is open:
0b000: High impedance
0b001: Session opened
0b010: WIP
0b011: MIP
0b100: Interrupt
0b101: State Control
0b110: RF Busy
0b111: RFU
RFU
When an I²C session is open:
0b000: High impedance
0b001: Session opened
0b010: WIP
0b011: I²C Answer Ready
0b100: Interrupt
0b101: State Control
0b110: RFU
0b111: RFU
Table 9. Details about the RF Session field
File offset b7 b6-b4 b3-b0
0x0004
RFU
When an RF session is open:
0b001: Session opened
RFU
DocID024754 Rev 16 25/89
M24SR04-Y M24SR04-G M24SR04 memory management
28
Table 10 gives some details about the ST reserved field.
Table 11 gives some details about the RF enable field.
3.2 Read and write access rights to the memory
An NDEF file can be locked for read or write accesses. It is also protected by a 128-bit
password that the host shall present before accessing the NDEF file. There are two 128-bit
passwords, one for the read access and the other one for the write access.
An NDEF file can be permanently locked for read or write accesses. Thus, the host cannot
access the NDEF file.
The read password shall be sent to the M24SR04 device before reading a read-locked
NDEF file.
The write password shall be present on the M24SR04 device before writing a write-locked
NDEF file. The write password shall be sent to change the read or write access. The read or
write access right is defined for the NDEF file.
3.2.1 State of the Read and Write access rights
Two bytes in the CC file are used to define the Read and Write access rights to the NDEF
file. For more details, refer to Section 3.1.2: CC file layout.
Table 10. Details about the ST reserved field
File offset b7-b0
0x0005
0x00
Table 11. Details about the RF enable field
File offset b7 b6-b4 b3 b2-b1 b0
0x0006
0: the RF field is off (1)
1: the RF field is on (1)
1. this field is written by the M24SR04.
RFU
0: the RF disable pad is at low state (1)
1: the RF disable pad is at high state (1)
RFU
0: the M24SR04 does not decode the command received from the RF interface
1: the M24SR04 decodes the command received from the RF interface
M24SR04 memory management M24SR04-Y M24SR04-G
26/89 DocID024754 Rev 16
The state 0xFF and 0xFE cannot be changed by using the Read or Write passwords.
3.2.2 Changing the read access right to NDEF files
The state diagram on Figure 10 shows how to change the access right to read an NDEF file.
Figure 10. Changing the read access right to an NDEF file
1. See the procedure to lock the read access (Section 8.4: Locking an NDEF file).
2. See the procedure to unlock the read access (Section 8.5: Unlocking an NDEF file).
3. See the procedure to permanently lock the read access (Section 8.6: Reaching the read-only state for an
NDEF file).
4. Proprietary state, not defined by NFC Forum Type 4 Tag. For NFC Forum compatible tags, the only
possible value of the read access rights are 0x00 (no restrictions on reads).
Table 12. Read access right
Value Meaning
0x00 Read access without any security
0x80 Locked (1)
1. The read password shall be sent before reading in the NDEF file.
0xFE Read not authorized
Table 13. Write access right
Value Meaning
0x00 Write access without any security
0x80 Locked (1)
1. The write password shall be sent before writing in the NDEF file.
0xFF Write not authorized
DocID024754 Rev 16 27/89
M24SR04-Y M24SR04-G M24SR04 memory management
28
3.2.3 Changing the write access right to NDEF files
The state diagram on Figure 11 shows how to change the write access right to an NDEF file.
Figure 11. Changing the write access right to an NDEF file
1. See the procedure to lock the write access.
2. See the procedure to unlock the write access.
3. See the procedure to permanently lock the write access (Section 8.6: Reaching the read-only state for an
NDEF file).
4. Proprietary state, not defined by NFC Forum Type 4 Tag. For NFC Forum compatible tags, it is mandatory
that the write access rights are set to either 0x00 (no restrictions on writes) or 0xFF (permanently locked).
0x80 might not be fully decoded with some smart phones.
3.3 Access right life time
The access right life time is validated while the NDEF file is selected or until the end of the
RF or I²C session. Once the read or write access right is granted, the host can send one or
more ReadBinary or UpdateBinary commands.
At the end of a session or when the host selects another file, the read and write access
rights are initialized.
3.4 NDEF file passwords
The NDEF file passwords protect the read or write access from an RF or I²C interface
from/to an NDEF file.
Two NDEF file passwords are available for each NDEF file:
Read password
Write password
The length of a password is 128 bits (16 bytes).
M24SR04 memory management M24SR04-Y M24SR04-G
28/89 DocID024754 Rev 16
3.5 I2C password
The I²C password can be sent only by the I²C host. It activates the SuperUser rights. The I²C
host with the SuperUser rights can:
Access the NDEF file regardless of the right access and without sending the NDEF file
passwords.
Change the access rights regardless of the current state.
The length of the I²C password is 128 bits (16 bytes).
3.5.1 I²C password and I²C protect field of the System file
The I²C protect field in the system file can be set to:
0x00: the I²C host has the SuperUser right access without sending the I²C password
0x01: the I²C host has the SuperUser right access after sending the I²C password
For more details about the system file layout, refer to Section 3.1.4: System file layout.
DocID024754 Rev 16 29/89
M24SR04-Y M24SR04-G Communication mechanism
78
4 Communication mechanism
This chapter describes the principle of communication between an RF or an I2C host and
the M24SR04 device.
4.1 Master and slave
The M24SR04 acts as a slave device on either the I2C-bus or the RF channel and therefore
waits for a command from the I2C master or the RF host before sending its response.
The RF host shall generate the RF field and the RF commands.
The I2C host shall supply the M24SR04 through the VCC pin and shall generate the I2C
clock on the SCL pad.
4.2 M24SR04 session mechanism
The M24SR04 is a dynamic NFC/RFID tag which can be accessed either from the RF or I2C
interface. The M24SR04 implements a token system. This token has two possible values,
RF or I2C. When the token exists and is assigned to one interface (RF or I2C), the M24SR04
cannot communicate with the other host.
4.2.1 RF token
The token is given to the RF interface once the anticollision is done. The release condition
can be either an RF field cut-off, or the reception of the command deselect, or when the I²C
host sends the KillRFsession.
4.2.2 I2C token
The token is given to the I2C interface when the I2C host has sent the correct device Select.
The release condition can be either a power down condition on VCC pin or the reception of a
I2C token release sequence from the I2C host, after which M24SR04 goes in Standby power
mode.
I²C and RF command sets M24SR04-Y M24SR04-G
30/89 DocID024754 Rev 16
5 I²C and RF command sets
The command sets of the M24SR04 can be split in different command families. Most
commands are common between the RF and the I²C interface. Some commands are
specific to the RF interface and some others are specific to the I²C interface. This section
describes the M24SR04 command sets that can be issued by the RF or the I²C host.
There are three command families:
the NFC Forum Type 4 Tag command set
the ISO/IEC 7816-4 command set
the proprietary command set
The NFC Forum Type 4 Tag command set and the ISO/IEC 7816-4 command set use the I-
Block format. For more details about the I-Block format, refer to Section 5.2: I-Block format.
Two other command formats exist:
the commands using the R-Block format
the commands using the S-Block format
For more details about these formats, refer to the corresponding sections: Section 5.3: R-
Block format and Section 5.4: S-Block format.
This section gives a brief description of the RF and I²C host common commands. The
format of these command sets is the I-Block format.
Table 14 lists the RF and I²C command sets.
Table 14. RF and I²C command sets
Family
command set Command name Class
byte
Instruction
code Brief description
NFC Forum
Type 4 Tag
NDEF Tag Application Select 0x00 0xA4 NDEF Tag Application
Select
CC select 0x00 0xA4 Select the CC file
NDEF select 0x00 0xA4 Select the NDEF file
System select 0x00 0xA4 Select the system file
ReadBinary 0x00 0xB0 Read data from file
UpdateBinary 0x00 0xD6 Write or erase data to a
NDEF file
ISO/IEC 7816-4
Verify 0x00 0x20
Checks the right access of
a NDEF file or sends a
password
ChangeReferenceData 0x00 0x24 Change a Read or write
password
EnableVerificationRequirement 0x00 0x28 Activate the password
security
DisableVerificationRequirement 0x00 0x26 Disable the password
security
DocID024754 Rev 16 31/89
M24SR04-Y M24SR04-G I²C and RF command sets
78
5.1 Structure of the command sets
The exchange of data between the RF or the I²C host and the M24SR04 uses three kinds of
data formats, called blocks:
I-Block: to exchange the command and the response
R-Block: to exchange positive or negative acknowledgment
S-Block: to use either the Deselect command or the Frame Waiting eXtension (WTX)
command or response
Note: max WTX value = 0x0B
This section describes the structure of the I-Block, R-block and S-Block. This format is used
for the application command set.
5.2 I-Block format
The I-Block is used to exchange data between the RF or the I²C host and the M24SR04. It is
composed of three fields. Table 15 details the I-Block format.
ST Proprietary EnablePermanentState 0xA2 0x28 Enables the Read Only or
Write Only security state
ST Proprietary ExtendedReadBinary 0xA2 0xB0 Read data from file
Table 14. RF and I²C command sets (continued)
Family
command set Command name Class
byte
Instruction
code Brief description
Table 15. I-Block format
Name
SoD Payload EoD
PCB DID 0 CRC
Length 1 byte 1 byte 1 to 251 bytes 2 bytes
PCB field
DID field (optional)
RF or I²C host to M24SR04: C-APDU
M24SR04 to RF or I²C host: R-APDU
2 CRC bytes
I²C and RF command sets M24SR04-Y M24SR04-G
32/89 DocID024754 Rev 16
When the RF or I²C host sends a command to the M24SR04 the format of the payload is the
C-APDU.
When the M24SR04 sends a command to the RF or I²C host, the format of the payload is
the R-APDU.
5.2.1 C-APDU: payload format of a command
The C-APDU format is used by the RF or the I²C host to send a command to the M24SR04.
Table 17 describes its format.
Table 16. PCB field of the I-Block format
b7-b6b5b4b3b2b1b0
0b00 0 0 X 0 1 X
I-Block
RFU
Must be set to 0
DID field, if bit is set
Must be set to 0
Must be set to 1
Block number
Table 17. C-APDU format
Name
Payload field
CLA INS P1 P2 LC Data Le
Length 1 byte 1 byte 1 byte 1 byte 1 byte Lc byte 1 byte
Class byte
0x00: standard command
0xA2: ST command
Instruction byte
Param Byte 1
Param Byte 2
Number of bytes of the Data field
Data bytes
Number of bytes to be read in the M24SR04 memory
DocID024754 Rev 16 33/89
M24SR04-Y M24SR04-G I²C and RF command sets
78
5.2.2 R-APDU: payload format of a response
the M24SR04 uses the I-Block format to reply to a command which used the I-Block format.
This format is described in Table 18.
5.3 R-Block format
The R-Block is used to convey positive or negative acknowledgment between the RF or I²C
host and the M24SR04.
There are two kinds of R-Blocks:
R(ACK): the acknowledgment block sent by the RF or I²C host or by the M24SR04.
R(NAK): the non-acknowledgment block sent by the RF or I²C host or by the
M24SR04.
Table 18. R-APDU format
Name
Payload field
Data (optional) SW1 SW2
Length Le byte 1 byte 1 byte
Data
Status byte 1
Status byte 2
Table 19. R-Block format
PCB CRC
R(ACK) without the DID field: 0xA2 or 0xA3
R(ACK) with the DID field: 0xAA or 0xAB
R(NAK) without the DID field: 0xB2 0xB3
R(NAK) with the DID field: 0xBA 0xBB
2 CRC bytes
I²C and RF command sets M24SR04-Y M24SR04-G
34/89 DocID024754 Rev 16
5.4 S-Block format
The S-Block is used to exchange control information between a reader and a contactless
tag.
There are two requests using the S-Block format:
S(DES): the deselect command
S(DES) is only applicable to RF
S(WTX): the Waiting Frame eXtension command or response.
A Waiting Time eXtension request occurs, in RF or I2C, when the operating time
needed by M24SRxx is greater than 9.6 ms.
The WTX field indicates the increase time factor to be used in this command execution
(FDTtemp = WTX * 9.6 ms). The max WTX value is equal 0x0B.
Table 20. R-Block detailed format
b7-b6 b5 b4 b3 b2 b1 b0
0b10 1 X X 0 1 X
R-Block
RFU
1: NAK
0: ACK
0: DID field is not present
1: DID field is present
Must be set to 0
Must be set to 1
Block number
Table 21. S-Block format
NFC frame
SoD EoD
PCB DID Payload CRC
Length 1 byte 1 byte 0 to 1 bytes 2 bytes
0xC2: for S(DES) when the DID field is not present
0xCA: for S(DES) when the DID field is present
0xF2: for S(WTX) when the DID field is not present
0xFA: for S(WTX) when the DID field is present
DID field (optional)
WTX field (1)
2 CRC bytes
1. This field is present when b5-b4 bits are set to 0b11 (S-Block is a WTX). see Table 22: S-Block detailed format.
DocID024754 Rev 16 35/89
M24SR04-Y M24SR04-G I²C and RF command sets
78
Note: After receiving the deselect command, the session is released and M24SR04 enters the
Standby power mode. In I2C, the session is released after executing the I2C token release
sequence.
In response to a RATS command, M24SR04 returns FWI parameter (default frame waiting
time used); when M24SR04 needs more time for a command execution, it requests a frame
waiting time extension by responding 0xF2 0xWTX (Request waiting time = FWI * WTX). If
the reader accepts M24SR04 request, it acknowledges by sending the command 0xF2
0xWTX. The frame waiting time becomes FWI * WTX for the current command only.
5.5 CRC of the I2C and RF frame
The two CRC bytes check the data transmission between the RF host or I²C host and the
M24SR04. For the RF frame, the CRC is computed on all the data bits in the frame,
excluding parity bits, SOF and EOF, and the CRC itself.
For the I²C frames, the CRC is computed on all data bits of the frame excluding Device
select and the CRC itself.
The CRC is as defined in ISO/IEC 13239. The initial register content shall be 0x6363 and
the register content shall not be inverted after calculation.
Table 22. S-Block detailed format
b7-b6 b5-b4 b3 b2 b1 b0
0b11 X X 0 1 0
S-Block
0b00: Deselect
0b11: WTX
0: DID field is not present
1: DID field is present
-
RFU
RFU
I²C and RF command sets M24SR04-Y M24SR04-G
36/89 DocID024754 Rev 16
5.6 NFC Forum Type 4 Tag protocol
5.6.1 Commands set
With the NFC Forum Type 4 Tag protocol, the commands are common to RF and I²C.
5.6.2 Status and error codes
This section lists the status and the error code of the M24SR04.
Table 23. Command set overview
Command name Brief description
NDEF Tag Application Select Select the NDEF Tag Application
Capability Container Select Select the capability container (CC) file using the
Select command
NDEF Select Select the NDEF file
System File Select Select the system file
ReadBinary Read data from a file
UpdateBinary Write new data to a file
Table 24. Status code of the M24SR04
SW1 SW2 Comment
Value 0x90 0x00 Command completed
successfully
Table 25. Error code of the M24SR04
SW1 SW2 Comment
Length 1 byte 1 byte
Value 0x62 0x80 File overflow (Le error)
Value 0x62 0x82 End of file or record reached
before reading Le bytes
Value 0x63 0x00 Password is required
Value 0x63 0xCX
Password is incorrect, X further
retries allowed (X can take
value 0,1, 2)
Value 0x65 0x81 Unsuccessful updating
Value 0x67 0x00 Wrong length
Value 0x69 0x81 Cmd is incompatible with the
file structure
Value 0x69 0x82 Security status not satisfied
Value 0x69 0x84 Reference data not usable
DocID024754 Rev 16 37/89
M24SR04-Y M24SR04-G I²C and RF command sets
78
Value 0x6A 0x80 Incorrect parameters Le or Lc
Value 0x6A 0x82 File or application not found
Value 0x6A 0x84 File overflow (Lc error)
Value 0x6A 0x86 Incorrect P1 or P2 values
Value 0x6D 0x00 INS field not supported
Value 0x6E 0x00 Class not supported
Table 25. Error code of the M24SR04 (continued)
SW1 SW2 Comment
Length 1 byte 1 byte
I²C and RF command sets M24SR04-Y M24SR04-G
38/89 DocID024754 Rev 16
5.6.3 NDEF Tag Application Select command
the RF or the I²C host shall send this command to activate the NDEF Tag Application.
To activate the NDEF Tag Application, the RF host sends the Select command (see
Table 26) in addition to the sequence defined in the NFC Forum digital protocol.
To activate the NDEF Tag Application, the I²C host sends the Select command (see
Table 26) in addition to the GetSession or the Kill RF session command.
Table 26 defines the C-APDU of the Select command to select the NDEF Tag Application
(called NDEF Tag Application Select).
Table 27 defines the R-APDU of the NDEF Tag Application Select command.
5.6.4 Capability Container Select command
The RF or I²C host uses the Capability Container Select procedure to select the capability
container (CC) file.
The CC file is selected when this command returns "command completed" in the R-APDU.
Table 28 defines the C-APDU of the Select command to select the CC file (called Capability
Container Select).
Table 26. C-APDU of the NDEF Tag Application Select command
Name CLA INS P1 P2 Lc Data Le
Value 0x00 0xA4 0x04 0x00 0x07 0xD27600
00850101 0x00
Class byte
Select instruction code
P1 field
P2 field
Number of bytes of data
Application ID
Le field
Table 27. R-APDU of the NDEF Tag Application Select command
Data SW1 SW2 Comment
Length - 1 byte 1 byte -
Value - 0x90 0x00 Command completed
Value - 0x6A 0x82 NDEF Tag Application not found
Value - 0x6D 0x00 Class not supported
DocID024754 Rev 16 39/89
M24SR04-Y M24SR04-G I²C and RF command sets
78
Table 29 defines the R-APDU of the CC Select command.
5.6.5 NDEF Select command
The RF or I²C host uses the NDEF Select command to select the NDEF file.
The NDEF file is selected when this command returns “command completed” in the R-
APDU. Table 30 defines the C-APDU of the Select command to select the NDEF file (called
NDEF Select).
In case of a password is required to access the NDEF file, the NDEF Select command will
disable any previously granted access rights to this file. The Verify command might be
required to access the file.
Table 28. C-APDU of the Capability Container Select command
Name CLA INS P1 P2 Lc Data Le
Value 0x00 0xA4 0x00 0x0C 0x02 0xE103 -
Class byte
Select instruction code
P1 field
P2 field
Number of bytes of data
CC file ID
-
Table 29. R-APDU of the Capability Container Select command
Data SW1 SW2 Comment
Length - 1 byte 1 byte -
Value - 0x90 0x00 Command completed
Value - 0x6A 0x82 File or application not found
Value - 0x6D 0x00 Class not supported
Table 30. C-APDU of the NDEF Select command
Name CLA INS P1 P2 Lc Data Le
Value 0x00 0xA4 0x00 0x0C 0x02 0x000X -
Class byte
Select instruction code
P1 field
P2 field
Number of bytes of data
0x0001: first NDEF file
-
I²C and RF command sets M24SR04-Y M24SR04-G
40/89 DocID024754 Rev 16
Table 31 defines the R-APDU of the NDEF Select command.
5.6.6 System File Select command
The RF or I²C host uses this command to select the system file.
The System file is selected when this command returns "command completed" in the R-
APDU.
Table 32 defines the C-APDU of the command to select the System file (called System
Select).
Table 33 defines the R-APDU of the System File Select command.
Table 31. R-APDU of the NDEF Select command
Data SW1 SW2 Comment
Length - 1 byte 1 byte -
Value - 0x90 0x00 Command completed
Value - 0x6A 0x82 File or application not found
Table 32. C-APDU of the System File Select command
Name CLA INS P1 P2 Lc Data Le
0x00 0xA4 0x00 0x0C 0x02 0xE101 -
Class byte
Select instruction code
P1 field
P2 field
Number of bytes of data
System file ID
-
Table 33. R-APDU of the System File Select command
Data SW1 SW2 Comment
Length - 1 byte 1 byte -
Value - 0x90 0x00 Command completed
Value - 0x6A 0x82 Capability container not found, no data
is returned
DocID024754 Rev 16 41/89
M24SR04-Y M24SR04-G I²C and RF command sets
78
5.6.7 ReadBinary command
On receiving the ReadBinary command, the M24SR04 reads the requested memory field
and sends back its value in the R-APDU response.
Before sending a ReadBinary command, a file shall be selected by using a Select
command.
The Response of the ReadBinary command is successful when the data to be read is within
the selected file (1); in other words, when the sum of P1-P2 and Le fields is equal to or lower
than the selected file length.
Table 34 defines the ReadBinary command.
Table 35 defines the R-APDU of the ReadBinary command.
1. For more details about CC file, refer to Section 3.1.2: CC file layout.
For more details about NDEF file, refer to Section 3.1.3: NDEF file layout.
For more details about System file, refer to Section 3.1.4: System file layout.
Table 34. C-APDU of the ReadBinary command
Name CLA INS P1 & P2 Lc Data Le
0x00 0xB0 2 bytes - - 1 byte
Class byte
Read instruction code
Offset in the file selected
-
-
Number of bytes to read between
0x01 Le max(Selected File length, 0xF6)
Table 35. R-APDU of the ReadBinary command
Data SW1 SW2 Comment
Length - 1 byte 1 byte -
Value Content read 0x90 Don’t care(1)
1. For more information, please contact your local ST support.
Command completed
Value - 0x67 0x00 Wrong length
Value - 0x69 0x82 Security status not satisfied
Value - 0x6A 0x82 File or application not found
Value - 0x6E 0x00 Class not supported
I²C and RF command sets M24SR04-Y M24SR04-G
42/89 DocID024754 Rev 16
5.6.8 UpdateBinary command
On receiving the UpdateBinary command, the M24SR04 writes the data field into the
selected file and sends back a status in the R-APDU response. If needed, M24SRxx will
request a timing extension (see Section 5.4).
Before sending an UpdateBinary command, a file shall be selected by issuing a Select
command.
Table 36 defines the UpdateBinary command.
Table 37 defines the R-APDU of the UpdateBinary command.
Note: Chaining is not supported on “UpdateBinay” command.
For further return codes and definitions, refer to Status and error codes.
Table 36. C-APDU of the UpdateBinary command
Name CLA INS P1 & P2 Lc Data Le
0x00 0xD6 2 bytes 1 byte Lc bytes -
Class byte
Write instruction code
Offset in the file selected
Number of bytes of data (0x01 Lc 0xF6)
Data to write in the M24SR04 memory
-
Table 37. R-APDU of the UpdateBinary command
Data SW1 SW2 Comment
Length - 1 byte 1 byte -
Value - 0x90 0x00 Command completed
Value - 0x65 0x81 Unsuccessful updating
Value - 0x67 0x00 Wrong length
Value - 0x69 0x82 Security status not satisfied
Value - 0x6A 0x82 File or application not found
Value - 0x6E 0x00 Class not supported
DocID024754 Rev 16 43/89
M24SR04-Y M24SR04-G I²C and RF command sets
78
5.7 ISO/IEC 7816-4 commands
The ISO/IEC 7816-4 command set offers some extended features such as the protection of
the NDEF file. This command set is used to manage the right access of the NDEF file.
5.7.1 Verify command
The Verify command has two functions:
1. Check if a password is required to access to the NDEF file (the LC field = 0x00).
2. Check that the password embedded in the Verify command allows the access to the
memory (the Lc field = 0x10 and the password is present).
When the Lc field if equal to 0x00, the verify command returns a success code (0x90 00)
provided that the access to the NDEF file does not require a password. When the access to
the NDEF file is protected, the response to the Verify command returns an error code
(0x63 00).
When the Lc field equals 0x10, on receiving the Verify command, the M24SR04 compares
the requested password with the data contained in the request and reports whether the
operation has been successful in the response.
Before sending this command, an NDEF file shall be selected by issuing the NDEF Select
command. Thus, this command checks the right access condition of the last NDEF file
selected.
After a successful command, an access is granted for the whole NDEF file.
Table 38 defines the Verify command.
Table 38. Verify command format
Name CLA INS P1 & P2 Lc Data Le
0x00 0x20 2 bytes 1 byte Lc bytes -
Class byte
Instruction code
Password identification
0x0001: Read NDEF password transmit
0x0002: Write NDEF password transmit
0x0003: I²C password transmit (1)
Other: RFU
1. This code can only be issued by the I²C host.
0x00: the password is not present
0x10: the password is present in the data field
Password
-
I²C and RF command sets M24SR04-Y M24SR04-G
44/89 DocID024754 Rev 16
Table 39 defines the R-APDU of the Verify command.
5.7.2 Change Reference Data command
The Change Reference Data command replaces the read or write password related to the
NDEF files previously selected. It can be performed only if the security status satisfies the
security attributes for this command.
Before sending this command, the verify command with the correct NDEF write password
shall be issued. Thus, this command changes the reference data of the NDEF file.
Table 40 defines the Change Reference Data command.
Table 40. Change reference data command format
Table 39. R-APDU of the Verify command
Data SW1 SW2 Comment
Length - 1 byte 1 byte -
Value - 0x90 0x00 Command completed, the password is correct
Value - 0x69 0x85 The conditions of use are not satisfied (e.g. no
NDEF file was selected)
Value - 0x69 0x81 Cmd incompatible with file structure
Value - 0x69 0x82 Security status not satisfied
Value - 0x6A 0x80 Incorrect parameter in cmd data field
Value - 0x63 0x00 A password is required
Value - 0x63 0xCX (1)
1. At each session, the RF or I2C host can check a password 3 times.
The password transmitted is incorrect and X
encodes the number of further allowed retries.
Value - 0x6E 0x00 Class not supported
Name CLA INS P1 & P2 Lc Data Le
0x00 0x24 2 bytes 1 byte Lc bytes -
Class byte
Instruction code
Password identification
0x0001: Read password transmit
0x0002: Write password transmit
0x0003: I²C password transmit (1)
Other: RFU
1. This code can only be issued by the I²C host.
0x10: the password is present in the data field
NDEF file or I²C Password
-
DocID024754 Rev 16 45/89
M24SR04-Y M24SR04-G I²C and RF command sets
78
Table 41 defines the R-APDU of the Change Reference Data command.
5.7.3 Enable Verification Requirement command
The Enable Verification Requirement command activates the protection by password of the
NDEF file. When this command is successful, the read or write access to the NDEF file is
protected by a 128-bit password. It can be performed only if the security status satisfies the
security attributes for this command.
This command can update the right access of the NDEF file by writing into the EEPROM. In
this case, the response timing will be around 5 ms.
Before sending this command, the verify command with the correct NDEF write password
shall be issued. Thus, this command changes the access right of the NDEF file.
Table 42 defines the Enable Verification requirement command.
The last five bits identify the password sent in the Verify command.
Table 41. R-APDU of the Change Reference Data command
Data SW1 SW2 Comment
Length 0 1 byte 1 byte -
Value - 0x90 0x00 Command completed, the access right has
been changed
Value - 0x69 0x81 Cmd is incompatible with the
file structure
Value - 0x65 0x81 Unsuccessful updating
Value - 0x69 0x82 Security status not satisfied
Value - 0x6A 0x80 CC file or System file selected
Value - 0x6A 0x82 File or application not found
Value - 0x6A 0x86 Incorrect P1 or P2 values
Value - 0x6E 0x00 Class not supported
Table 42. Enable Verification Requirement command format
Name CLA INS P1 & P2 Lc Data Le
0x00 0x28 2 bytes - - -
Class byte
Instruction code
New security attributes
0x0001: Enable the read protection of the NDEF file
0x0002: Enable the write protection of the NDEF file
Other: RFU
-
-
-
I²C and RF command sets M24SR04-Y M24SR04-G
46/89 DocID024754 Rev 16
Table 43 defines the R-APDU of the Enable Verification Requirement command.
5.7.4 Disable Verification Requirement command
The Disable Requirement command deactivates the protection by password of the NDEF
file. When this command is successful, the read or write access to the NDEF file is granted
without security requirements. It can be performed only if the security status satisfies the
security attributes for this command.
Before sending this command, the verify command with the correct NDEF write password
shall be issued. Thus, this command changes the access right of the NDEF file.
This command can update the right access of the NDEF file by writing into the EEPROM. In
this case, the response timing will be around 6 ms.
Table 44 defines the Disable Verification Requirement command.
Table 45 defines the R-APDU of the Disable Verification Requirement command.
Table 43. R-APDU of the Enable Verification Requirement command
Data SW1 SW2 Comment
Length 0 1 byte 1 byte -
Value - 0x90 0x00 Command completed, the password is
correct
Value - 0x69 0x81 Cmd is incompatible with the file structure
Value - 0x69 0x82 Security status not satisfied
Value - 0x6A 0x80 CC file or System file selected
Value - 0x6A 0x82 File or application not found
Value - 0x6A 0x86 Incorrect P1 or P2 values
Table 44. Disable Verification Requirement command format
Name CLA INS P1 & P2 Lc Data Le
0x00 0x26 2 bytes - - -
Class byte
Instruction code
New security attributes
0x0001: Disable the read protection of the NDEF file
0x0002: Disable the write protection of the NDEF file
Other: RFU
-
-
-
DocID024754 Rev 16 47/89
M24SR04-Y M24SR04-G I²C and RF command sets
78
5.8 ST Proprietary command set
The RF or I²C host can be issued with the command set described in this chapter.
5.8.1 ExtendedReadBinary command
On receiving the ExtendedReadBinary command, the M24SR04 reads the requested
memory field and sends back its value in the R-APDU response.
Before sending an ExtendedReadBinary command, a file shall be selected by issuing an
NDEF select command.
The response of the ExtendedReadBinary command will be successful even if the data to
be read is beyond the NDEF message. The command returns an error code if the data to be
read goes beyond the end of the file.
Table 47 defines the R-APDU of the read binary command.
Table 45. R-APDU of the Disable Verification Requirement command
Data SW1 SW2 Comment
Length 0 1 byte 1 byte -
Value - 0x90 0x00 Command completed, the password is correct
Value - 0x69 0x81 Cmd is incompatible with the file structure
Value - 0x69 0x82 Security status not satisfied
Value - 0x6A 0x80 CC file or System file selected
Value - 0x6A 0x82 File or application not found
Value - 0x6A 0x86 Incorrect P1 or P2 values
Value - 0x6E 0x00 Class not supported
Value - 0x65 0x81 Update failed
Table 46. C-APDU of the ExtendedReadBinary command
Name CLA INS P1 & P2 Lc Data Le
Length 0xA2 0xB0 2 bytes - - 1 byte
ST Class byte
Read instruction code
Offset in the file selected
-
-
-
Number of bytes to read between 0x01 Le 0xF6
I²C and RF command sets M24SR04-Y M24SR04-G
48/89 DocID024754 Rev 16
5.8.2 EnablePermanentState command
The command configures the NDEF file to the ReadOnly or to the WriteOnly State.
This command can update the right access to the NDEF file by writing into the EEPROM. In
this case, the response timing will be around 6 ms.
Table 48 defines the EnablePermanentState requirement command.
Table 49 defines the R-APDU of the EnablePermanentState command.
Table 47. R-APDU of the ExtendedReadBinary command
Data SW1 SW2 comment
Length Le bytes 1 byte 1 byte -
Value Content read 0x90 Don’t care(1)
1. For more information, please contact your local ST support.
Command completed
Value - 0x67 0x00 Wrong length
Value - 0x69 0x82 Security status not satisfied
Value - 0x6A 0x82 File or application not found
Value - 0x6A 0x86 Incorrect P1 or P2 values
Value - 0x6E 0x00 Class not supported
Table 48. EnablePermanentState command format
Name CLA INS P1 & P2 Lc Data Le
Length 0xA2 0x28 2 bytes - - -
Class byte
Instruction code
New security attributes
0x0001: Enable the read protection of the NDEF file
0x0002: Enable the write protection of the NDEF file
Other: RFU
-
-
-
-
Table 49. R-APDU table of the EnablePermanentState command
Data SW1 SW2 comment
Length - 1 byte 1 byte -
Value - 0x90 0x00 Command completed
Value - 0x65 0x81 Update failed
Value - 0x67 0x00 Wrong length
DocID024754 Rev 16 49/89
M24SR04-Y M24SR04-G I²C and RF command sets
78
5.8.3 DisablePermanentState command
The command configures the NDEF file to the Lock state.
This command can update the right access of the NDEF file by writing into the EEPROM. In
this case, the response timing will be around 6 ms. This command is only valid in I2C. The
SuperUser rights must have been granted to execute the command.
Before sending this command, an NDEF file shall be selected by issuing the NDEF Select
command.
Table 50 defines the DisablePermanentState requirement command.
Table 51 defines the R-APDU of the DisablePermanentState command.
Value - 0x69 0x82 Security status not satisfied
Value - 0x6A 0x80 CC file or System file selected
Value - 0x6A 0x82 File or application not found
Value - 0x6A 0x86 Incorrect P1 or P2 values
Value - 0x6E 0x00 Class not supported
Table 49. R-APDU table of the EnablePermanentState command (continued)
Data SW1 SW2 comment
Table 50. DisablePermanentState command format
Name CLA INS P1 & P2 Lc Data Le
Length 0xA2 0x26 2 bytes - - -
Class byte
Instruction code
New security attributes
0x0001: Disable the read protection of the NDEF file
0x0002: Disable the write protection of the NDEF file
Other: RFU
-
-
-
Table 51. R-APDU of the DisablePermanentState command
Data SW1 SW2 comment
Length - 1 byte 1 byte -
Value - 0x90 0x00 Command completed
Value - 0x65 0x81 Update failed
Value - 0x67 0x00 Wrong length
Value - 0x69 0x82 Security status not satisfied
I²C and RF command sets M24SR04-Y M24SR04-G
50/89 DocID024754 Rev 16
5.8.4 UpdateFileType command
This command allows to modify the file type of a selected file to Proprietary file (0x05) or
NDEF file (0x04).
NFC Forum compatible tags must configure the file as NDEF file (0x04).
This command is granted only, when application and file are selected and if the file length
and access right have previously been set to 0X00h (message invalid, all access rights
granted).
This command will update the file type located in the CC file by writing into the EEPROM. In
this case, the response timing will be around 6 ms.
Table 52 defines the UpdateFileType command.
Table 53 describes the R-APDU of the UpdateFileType command.
Value - 0x6A 0x80 CC file or System file selected
Value - 0x6A 0x82 File or application not found
Value - 0x6A 0x86 Incorrect P1 or P2 values
Value - 0x6E 0x00 Class not supported
Table 51. R-APDU of the DisablePermanentState command (continued)
Data SW1 SW2 comment
Table 52. UpdateFileType command format
Name CLA INS P1 P2 Lc Data Le
Value 0xA2 0xD6 0x00 0x00 0x01 0x04 or
0x05 -
Class byte
Select instruction code
P1 field
P2 field
Number of bytes of data
File type
-
Table 53. R-APDU of the UpdateFileType command
Data SW1 SW2 Comment
Length - 1 byte 1 byte -
Value - 0x90 0x00 Command completed
Value - 0x69 0x82 Security status not satisfied
Value - 0x6A 0x80 CC file or System file selected
DocID024754 Rev 16 51/89
M24SR04-Y M24SR04-G I²C and RF command sets
78
5.8.5 SendInterrupt command
On receiving the SendInterrupt command, the M24SR04 generates a negative pulse on the
GPO pin. It starts at the end of the command and ends at the end of the RF response.
Before sending this command, the system file shall be selected by issuing the System
Select command.
Table 54 defines the SendInterrupt command.
Table 55 describes the R-APDU of the SendInterrupt command.
5.8.6 StateControl command
On receiving the StateControl command with reset value: data 0x00, the M24SR04 drives
the GPO pin low. On receiving the StateControl command with set value: data 0x01, the
M24SR04 releases the GPO pin which returns to HZ.
Before sending this command, the system file shall be selected by issuing the System
Select command.
Table 56 defines the State Control command.
Value - 0x6A 0x82 File or application not found
Value - 0x6A 0x86 Incorrect P1 or P2 values
Table 53. R-APDU of the UpdateFileType command (continued)
Data SW1 SW2 Comment
Table 54. SendInterrupt command format
CLA INS P1&P2 Lc Data Le
Length 1 byte 1 byte 2 bytes 1 byte - -
Value 0xA2 0xD6 0x001E 0x00 - -
Table 55. R-APDU of the SendInterrupt command
Data SW1 SW2 Comment
Length - 1 byte 1 byte -
Value - 0x90 0x00 The interrupt has been sent
Value - 0x6A 0x80 The GPO is not configured as an interrupt mode
Value - 0x6A 0x82 File or application not found
Value - 0x6A 0x86 Incorrect P1 or P2 values
Value - 0x6E 0x00 Class not supported
I²C and RF command sets M24SR04-Y M24SR04-G
52/89 DocID024754 Rev 16
5.9 Specific RF command set
This section describes the command set that can be issued only by the RF host.
5.9.1 Anticollision command set
Table 58 lists the commands that can be issued only by the RF host. The format of these
commands is described in the NFC Forum Digital Protocol specification.
5.9.2 RATS command and ATS response
RATS command and ATS response are used for NFC Forum Type 4A Tag Platform Device
Activation (as defined in NFC Forum Digital Protocol specification).
Table 59 details the RATS command. This command shall be sent after the anticollision
process.
Table 56. StateControl command format
CLA INS P1&P2 Lc Data Le
Length 1 byte 1 byte 2 bytes 1 byte - -
Reset value 0xA2 0xD6 0x001F 0x01 0x00 -
Set value 0xA2 0xD6 0x001F 0x01 0x01 -
Table 57. R-APDU of the StateControl command
Data SW1 SW2 Comment
Length - 1 byte 1 byte -
Value - 0x90 0x00 The set or reset has been sent
Value - 0x6A 0x80 The GPO is not configured in StateControl mode
Value - 0x6A 0x82 File or application not found
Value - 0x6A 0x86 Incorrect P1 or P2 values
Value - 0x6E 0x00 Class not supported
Table 58. Commands issues by the RF host
Family command set Command name Instruction code
NFC-A technology
ALL_REQ 0x52 (1)
1. Code on 7 bits.
SENS_REQ 0x26 (1)
SDD_REQ 0x93 or 0x95 or 0x97
SEL_REQ 0x93 or 0x95 or 0x97
SLP_REQ 0x50
DocID024754 Rev 16 53/89
M24SR04-Y M24SR04-G I²C and RF command sets
78
The FSDI field codes the FSD that defines the maximum size that an RF or I²C host is able
to receive. Table 60 gives the conversion from FDSI to FSD.
The DID field defines the value of the addressed M24SR04.
The FSCI codes the FSC which stands for the maximum frame size that the M24SR04 is
able to receive. The M24SR04 is able to receive up to 256 bytes of command. If the RF or
I²C host sends a command with more than 256 bytes, the M24SR04 will not be able to treat
the command and will not reply.
The FWI which stands for the Frame Waiting time Integer codes the FWT. This time
corresponds to the maximum duration while an RF or I²C host shall send before sending the
next command.
Table 59. RATS command
Name INS Param CRC
Byte field 0xE0 1 byte 2 bytes
Bit field b7-b4 b3-b0
Instruction code
FSDI
DID (0 DID 14)
2 CRC bytes
Table 60. Conversion from FDSI to FSD
FSDI 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9h-
0xE 0xF
FSD 16 24 32 40 48 64 96 128 256 RFU 256
Table 61. ATS response
Name TL T0 TA(1) TB(1) TC(1) CRC
Byte field 0x05 0x78 1 byte 1 byte 0x02 2 bytes
Bit field b8-b5 b4-b1
Length of the ATS
response
FSCI = 256 bytes
The maximum ascending data rate is 106 kbps
The maximum descending data rate is 106 kbps
FWI field (9.6 ms when TB = 0x50)
SFGI field (302 µs when TB = 0x50)
The DID is supported
2 CRC bytes
I²C and RF command sets M24SR04-Y M24SR04-G
54/89 DocID024754 Rev 16
The SFGI which stands for the Start-up Frame Guard Time is the minimum time that the
reader shall wait after receiving the response of the M24SR04.
5.9.3 PPS command & response
PPS (Protocol and Parameter Selection) command and response are defined in ISO/IEC
14443-4, in the Protocol Activation of PICC Type A.
The PPS command allows to change the data rates of the ascending (RF host to M24SR04)
and descending (M24SR04 to RF host) data rates.
The ascending and descending data rates shall be coded as described in Table 63.
When the M24SR04 is able to change both data rates, it returns the following response. The
data rate of this response is 106 kbps; then, the M24SR04 changes the ascending and
descending data rates.
Table 64 gives the details of the PPS response.
Table 62. PPS command
-
Name INS PPS0 PPS1 CRC
Byte field 0xDX 0x11 1 byte 2 bytes
Bit field b7-b4 b3-b0 0b0000 b3-b2 b1-b0
INS
Instruction code
DID
PPS1 is present
PPS1
RFU
Descending data rate
Ascending data rate
2 CRC bytes
Table 63. Ascending and descending data rate coding
Value 0b00 0b01 0b10 0b11
Data rate 106 kbps RFU RFU RFU
Table 64. PPS response
Name INS - PPS0
Byte field 0xDX - 0x11
Bit field b8-b5 b4-b1
Response code
DID field
2 CRC bytes
DocID024754 Rev 16 55/89
M24SR04-Y M24SR04-G I²C and RF command sets
78
5.10 Specific I²C command set
Table 65 lists the commands that can only be issued by the I²C host.
5.10.1 GetI2Csession command
The GetI2Csession command opens an I²C session if an RF session is not ongoing.
Table 66 defines the GetI2Csession command.
The GetI2Csession command does not create a reply.
When an RF session is ongoing, the M24SRxx will not acknowledge the command.
When no RF session is ongoing, the M24SRxx will acknowledge the command and open an
I²C session.
5.10.2 KillRFsession command
The KillRF session command closes the RF session and opens an I²C session.
Table 67 defines the KillRFsession command.
The KillRFsession command does not create a reply. The RF session is closed when the
device acknowledges the command.
Caution: A successful completion of the RF command is not certain.
Table 65. Specific I²C commands
Command name Format Class byte Instruction
code Brief description
GetI2Csession - - 0x26 Open an I²C session when the
RF session is not ongoing
KillRFsession - - 0x52 Kill the RF session and open an
I²C session
Table 66. GetI2Csession command format
INS
Length 1 byte
Value 0x26
Table 67. KillRFsession command format
INS
Length 1 byte
Value 0x52
RF device operation M24SR04-Y M24SR04-G
56/89 DocID024754 Rev 16
6 RF device operation
6.1 Anticollision and Device Activation command set for the RF
interface
The M24SR04 device supports the command set defined in the NFC-A Technology and the
Type 4A Tag Platform chapters of the NFC Digital Protocol V1.0 specification.
6.2 Open an RFsession
Once the RF host has terminated the anticollision procedure and retrieve the ATS response,
it shall send the SelectApplication command. The M24SR04 will open an RF session. At this
point, the RF host can send the applicative command set and the I²C cannot communicate
with the M24SR04 without closing first the RF session using the I2C KillRFsession
command.
6.3 Close an RFsession
The RF host can close the RF session by issuing one of these methods:
send an S(DES) command
turn off the RF field
6.4 Applicative command set
The applicative command set is composed of the following command sets:
the NFC Forum Type 4 Tag command set
the ISO/IEC 7816-4 command set
the proprietary command set
DocID024754 Rev 16 57/89
M24SR04-Y M24SR04-G I2C device operation
78
7 I2C device operation
The M24SR04 device supports the I2C protocol. The device that controls the data transfer is
known as the bus master, and the other one as the slave device. A data transfer can only be
initiated by the bus master, which also provides the serial clock for synchronization. The
M24SR04 device is a slave in all communications.
7.1 I2C communication protocol
The I2C communication is built on a system of command and reply exchange. The I2C host
starts the communication by sending a request. Once a valid request is received by the
M24SR04 device, it carries out an internal operation and creates its answer.
As defined in this document, and except for the GetI2C session and Kill RF session
commands, the definition of a valid request is a command with a right CRC value.
Figure 12 shows an exchange of a command and a response between the I²C host and the
M24SR04. Once the I²C session is open, the I²C host can send a command. The command
is composed of:
a Device Select field with the R/W bit set to 0.
the command field.
The M24SR04 acknowledges on the reception of each byte.
Once the M24SR04 is ready to send the answer, the I²C host shall:
send a Device Select field with the R/W bit set to 1.
release the SDA line and send an SCL clock.
The I²C host shall acknowledge on the reception of each byte.
Figure 12. Command and response exchange
Legend:
S is the I2C Start bit sequence
P is the I2C Stop bit sequence
R/W is the 8th bit of Device Select.
Note: A restart during a command and response exchange is not supported by the M24SR04.
After a command, the I2C host can execute a Polling sequence to determine when the
response is available.
Polling sequence: Loop on < START (S) + DeviceSelect with RW=0 + read NACK/ACK
+ STOP (P) >
The response is available as soon as the M24SR04 sends an ACK ( host read will a
'0').
069
'HYLFH6HOHFW
,&EXV
&RPPDQG
63 'HYLFH6HOHFW 5HVSRQVH6 3
5:  5: 
I2C device operation M24SR04-Y M24SR04-G
58/89 DocID024754 Rev 16
7.2 Start condition
A Start condition is identified by a falling edge of serial data (SDA) while the serial clock
(SCL) is stable in the high state. A Start condition must precede any data transfer command.
The device continuously monitors (except during an instruction processing) the SDA and the
SCL for a Start condition, and does not respond unless one is given.
7.3 Stop condition
A Stop condition is identified by a rising edge of serial data (SDA) while the serial clock
(SCL) is stable and driven high. A Stop condition terminates a command between the device
and the bus master.
7.4 I²C token release sequence
As explained in the M24SR04-Y M24SR04-G session mechanism, the I²C communication is
reserved to the I²C host when the session token has the I²C value.
The following sequence explains how to release the I²C value of the session token.
I²C communication with the M24SR04 starts with a valid Start condition, followed by a
device select code.
If the delay between the Start condition and the following rising edge of the Serial Clock
(SCL) that samples the most significant of the Device Select exceeds the tSTART_OUT_MAX
time (see Table 78), the I²C logic block is reset and further incoming data transfer is ignored
until the next valid Start condition.
Figure 13. I²C token release sequence
Note: If the above delay is below tSTART_OUT_min (see Table 78), I2C session token stays
unmodified.
If the delay is between tSTART_OUT_min and tSTART_OUT_max, I2C session token might or not
be released. This range of delay is not authorized for safe operation.
6&/
!W67$57B287BPD[
6WDUW
FRQGLWLRQ
6WRS
FRQGLWLRQ
065'HYLFH
6HOHFWFRGH
6'$
06Y9
DocID024754 Rev 16 59/89
M24SR04-Y M24SR04-G I2C device operation
78
7.5 I²C timeout on clock period
During a data transfer on the I2C bus, if the serial clock high pulse or serial clock low pulse
exceeds tCL_RESET value that is the maximum value specified in Table 78, the I2C logic
block is reset and any further incoming data transfer is ignored until the next valid Start
condition.
If the serial clock high pulse is under the maximum value of tCHCL and the serial clock low
pulse is under the maximum value of tCLCH in Table 78, the I2C logic block is not reset.
For proper operation, the serial clock high pulse should not be higher than tCHCL and lesser
than tCL_RESET
, and the serial clock low pulse should not be higher than tCHCH and lesser
tCL_RESET
.
7.6 Acknowledge bit (ACK)
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter,
whether a bus master or a slave device, releases the serial data (SDA) after sending eight
bits of data. During the 9th clock pulse period, the receiver pulls the SDA low to
acknowledge the receipt of the eight data bits.
7.7 Data input
During data input, the device samples serial data (SDA) on the rising edge of the serial clock
(SCL). For a correct device operation, the SDA must be stable during the rising edge of the
SCL, and the SDA signal must change only when the SCL is driven low.
7.8 I²C device address
The device address is the concatenation of the group number coded on 4 bits and the I2C
address coded on 3 bits, as shown in Table 68.
Table 68. I2C device address format
b7-b4b3b2b1b0
0b1010 1 1 0 0bx
Group number
E2 bit
E1 bit
E0 bit
0 = Request
1 = Answer
I2C device operation M24SR04-Y M24SR04-G
60/89 DocID024754 Rev 16
7.9 I²C frame format
The I2C frame is composed of three fields:
1. SOD field: contains the device select and the PCB. The PCB field is detailed in
Section 5.2.
2. Payload field: contains the command and its parameter, as defined in the I2C command
set.
3. EOD field: contains the two CRC bytes computed on the SOD but excluding the device
select byte field.
Table 69 shows the format of an I2C frame.
7.9.1 Example of I²C frame commands
NDEF Tag Application command
This example presents the I2C frame of an NDEF Tag Application Select command. The I2C
frame is detailed in Tabl e 70.
Before sending a new command, the I2C host can send an I2C frame to read the M24SR04
answer to the NDEF tag Application Select command.
Table 69. I2C frame format
I2C frame SOD Payload EOD
0xAC or 0xAD 1 byte 1 to 251 bytes 2 bytes
Device select
0xAC: to send a request to the M24SR04
0xAD: to read a response of the M24SR04
PCB field
I2C command or I2C answer
2 CRC bytes
Table 70. I2C host to M24SR04
Field SOD Payload EOD
Value 0xAC 0x02 or 0x03 Command field 35 C0 or DF BE
Device select
PCB field
0x00 A4 04 00 07 D2 76 00 00 85 01 01 00
2 CRC bytes
hm §¥§2ll2¥99lomlq¥yflINHI‘WIDKRZIQ¥Z§IQr99IQ¥99IQ¥§§Iq¥HAIOKRAIfi I was M55266. % ‘ ‘ ‘ ‘ “CK FXADHOXM‘ \nxsu‘ \omo‘ \mnunxnsi I H I x2 x0 m
DocID024754 Rev 16 61/89
M24SR04-Y M24SR04-G I2C device operation
78
Figure 14 shows the I2C frame of the NDEF tag Application Select command.
Figure 14. NDEF tag Application Select command
Table 71. M24SR04 to I2C host
Field SOD Payload EOD
I2C host to
M24SR04 M24SR04 to I2C host
Value 0xAD 0x02 or 0x03 0x90 00 F1 09 or 2D 53
Device select
PCB field
I2C command
2 CRC bytes
ϬdžϬϮ
06Y9
,ð&EXV
,ð&EXV
$&.
ϬdžϬϬ
$&.
Ϭdžϰ
$&.
$&.
%\WHVHQWE\WKH,ð&KRVW
ϬdžϬϰ
$&.
ϬdžϬϬ
$&.
ϬdžϬϳ
$&.
ϬdžϮ
$&.
Ϭdžϳϲ
$&.
ϬdžϬϬ
$&.
ϬdžϬϬ
$&.
Ϭdžϴϱ
$&.
ϬdžϬϭ
$&.
ϬdžϬϭ
$&.
[
$&.
[&
$&.
W
͘͘͘
͘͘͘
(QGRIWKH
WUDQVPLVVLRQ
RIWKHUHTXHVW
6WDUWRIWKH
WUDQVPLVVLRQ
RIWKHUHTXHVW
,ð&EXV
<
^
ϬdžϬϮ
<
ϬdžϵϬ
<
ϬdžϬϬ
<
Ϭdž&ϭ
<
ϬdžϬϵ
EŽ<
͘͘͘
6WDUWRIWKH
WUDQVPLVVLRQ
RIWKHDQVZHU
$&.
$FNQRZOHGJHE\WKH,ð&KRVW
%\WHVHQWE\WKH065[[<
W
/HJHQG
[ [
6
6WDUWVHQWE\WKH,ð&KRVW
3
6WRSVHQWE\WKH,ð&KRVW
ŶĚŽĨƚŚĞ
ƚƌĂŶƐŵŝƐƐŝŽŶ
ŽĨƚŚĞĂŶƐǁĞƌ
Ϭdž
$FNQRZOHGJHE\065[[<
[
$&.
Ϭdž
Ϭ
6$&.
1R$&.
1R$FNQRZOHGJHE\WKH,ð&KRVW
%\WHVHQWE\WKH065[[<
[
3
6WRSVHQWE\WKH,ð&KRVW
I2C device operation M24SR04-Y M24SR04-G
62/89 DocID024754 Rev 16
7.10 Open an I²C session
To open an I²C session, the I²C host shall send either the GetSession command or the
KillRFsession command. The GetSession Command opens an I²C session if an RF session
in not currently opened.
A KillRFsession command closes the current RF session if it exist and opens an I²C
session.
When an I²C session is opened, the RF host cannot communicate with the M24SR04 and
cannot close the I²C session.
7.11 Close the I²C session
There are three ways to close an I²C session:
turn off the Vcc power supply
send the I2C token release sequence
wait for the I²C watchdog when it is enabled
wait for the I²C timeout on clock period
DocID024754 Rev 16 63/89
M24SR04-Y M24SR04-G Functional procedures
78
8 Functional procedures
This section describes some procedure to access the memory or manage its protection.
8.1 Selection of an NDEF message
The RF or I²C host shall use this procedure to detect the NDEF message inside an
M24SR04.
The NDEF detection procedure is as follows:
1. Open an RF or an I²C session
2. Send the SelectNDEFTagApplication command
3. Select the CC file
4. Read the CC file
5. Select the NDEF file.
8.2 Reading of an NDEF message
The RF or I²C host executes the NDEF read procedure to read the NDEF file.
1. Detect successfully the NDEF file using the NDEF detection procedure
2. Check that the read access without any security is granted for the NDEF file from the
information provided by the CC file
3. Select the NDEF file
4. Read the NDEF file.
Note: Reading the NDEF file should not go beyond the NDEF Length field (NLEN), which
indicates the size of the NDEF message stored in the NDEF file.
8.3 Reading a locked NDEF file
The RF or I²C host executes this procedure to read an NDEF file which has been locked
previously.
1. Select the NDEF Tag Application
2. Select the NDEF file
3. Verify the Read password by using the Verify command
4. Read the data in the NDEF file.
Functional procedures M24SR04-Y M24SR04-G
64/89 DocID024754 Rev 16
8.4 Locking an NDEF file
The RF or I²C host executes this procedure to protect an NDEF file.
1. Select the NDEF Tag Application
2. Check the right access provided by the CC file
3. Select the NDEF file
4. Transmit the NDEF file Write password by using the Verify command
5. Lock the NDEF file by sending the Enable verification command.
8.5 Unlocking an NDEF file
The RF or I²C host executes this procedure to unlock an NDEF file which has been locked
previously.
1. Select the NDEF Tag Application
2. Select the NDEF file
3. Verify the NDEF file Write password or the I²C password by using the Verify command
4. Unlock the NDEF file by sending the Disable verification command.
8.6 Reaching the read-only state for an NDEF file
The RF or I²C host executes this procedure to reach the read-only state for an NDEF file.
1. Select the NDEF Tag Application
2. Select the NDEF file
3. Transmit the NDEF file Write password or the I²C password by using the Verify
command
4. Send an EnablePermanentState command as the Write access right of the previous
Select NDEF file.
8.7 Changing an NDEF password procedure
The RF or I²C host could use this procedure to change one NDEF password. it can be a
Read or Write password.
1. Select the NDEF Tag Application
2. Select the NDEF file
3. Transmit the NDEF file Write password or the I²C password by using the Verify
command
4. Change the password by sending a ChangeReferenceData command.
DocID024754 Rev 16 65/89
M24SR04-Y M24SR04-G Functional procedures
78
8.8 Changing a File type Procedure
The RF or I²C host executes this procedure to change the File Type of a file for which all
access rights were previously granted.
1. Select the NDEF Tag Application
2. Select the File to be modified
3. Set the File Length to 0x00 using the UpdateBinary command
4. Send an UpdateFileType command with the New file Type as data.
8.9 Updating a NDEF file
When there's enough space in the file to update it with new content, the following steps
should be followed to update the NDEF message:
1. Select the NDEF Tag Application
2. Select the NDEF file
3. Unlock the NDEF file if necessary
4. Write the NDEF length to 0x0000 with the Update Binary command.
5. Write the NDEF message in the NDEF message field using one or more Update Binary
commands.
6. Write the NDEF length of the NDEF message using the Update Update command.
It is recommended the NDEF length is read back and checked against the desired value to
ensure the Update sequence has been correctly performed.
UID: Unique identifier M24SR04-Y M24SR04-G
66/89 DocID024754 Rev 16
9 UID: Unique identifier
The M24SR04 is uniquely identified by a 7 bytes unique identifier (UID). The UID is a read-
only code and comprises:
The IC manufacturer code on 1 byte (0x02 for STMicroelectronics).
The Product code on 1 byte.
A device number on 5 bytes.
Table 72 describes the UID format.
Table 72. UID format
0x02 0x86 5 bytes
IC manufacturer code
M24SR04 product code
Device number
DocID024754 Rev 16 67/89
M24SR04-Y M24SR04-G Maximum ratings
78
10 Maximum ratings
Stressing the device above the ratings listed in Table 73 may cause permanent damage to
the device. These are stress ratings only and operation of the device at these or any other
conditions above those indicated in the operating sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect the device
reliability.
Table 73. Absolute maximum ratings
Symbol ParameterMin.Max.Unit
TA
Ambient operating temperature
for grade 6 - 40 85
°C
Ambient operating temperature
for grade 5 - 25 85
TSTG
Storage temperature UFDFPN8,
SO8, TSSOP8 - 65 150 °C
Storage temperature Sawn Bumped
Wafer (kept in
its antistatic
bag)
15 25 °C
Storage time - 9 months
TLEAD
Lead temperature
during soldering
UFDFPN8,
SO8, TSSOP8 see note (1)
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®
7191395 specification, and the European directive on Restrictions on Hazardous Substances (ROHS
directive 2011/65/EU, July 2011).
°C
VIO I2C input or output range and GPO - 0.50 6.5 V
ICC (2)
2. Based on characterization, not tested in production. Maximum absorbed power = 100 mW @ 7.5 A/m
RF supply current AC0 - AC1 - 100 mA
VMAX_1 (2)
RF input voltage
amplitude between
AC0 and AC1, GND
pad left floating
VAC0-VAC1 - 10 V
VMAX_2 (2)
AC voltage between
AC0 and GND, or AC1
and GND
VAC0-GND or
VAC1-GND - 0.5 4.5 V
VESD
Electrostatic discharge
voltage (human body
model) (3)
3. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1 = 100 pF, R1 = 1500 Ω, R2 = 500 Ω)
AC0-AC1 - 1000 V
VESD Electrostatic discharge
voltage (human body
model) (3)
Other pads - 3500 V
I2C DC and AC parameters M24SR04-Y M24SR04-G
68/89 DocID024754 Rev 16
11 I2C DC and AC parameters
This section summarizes the operating and measurement conditions, and the DC and AC
characteristics of the device in I2C mode. The parameters in the DC and AC characteristic
tables that follow are derived from tests performed under the measurement conditions
summarized in the relevant tables. Designers should check that the operating conditions in
their circuit match the measurement conditions when relying on the quoted parameters.
Figure 15. AC test measurement I/O waveform
Table 74. I2C operating conditions
Symbol Parameter Min. Max. Unit
VCC
Supply voltage range Y 2.7 5.5
V
Supply voltage range G 2.4 5.5
TA
Ambient operating temperature for grade 6 –40 85
°C
Ambient operating temperature for grade 5 -25 85
Table 75. AC test measurement conditions
Symbol Parameter Min. Max. Unit
CLLoad capacitance 100 pF
tr, tfInput rise and fall times - 50 ns
Vhi-lo Input levels 0.2 VCC to 0.8 VCC V
Vref(t) Input and output timing reference levels 0.3 VCC to 0.7 VCC V
Table 76. Input parameters
Symbol Parameter Min. Max. Unit
CIN Input capacitance (SDA) - 8 pF
CIN Input capacitance (other pins) - 6 pF
tNS Pulse width ignored (Input filter on SCL and SDA) - 80 ns
069
6CC
9FF
9FF
,QSXWOHYHOV ,QSXWDQGRXWSXW
WLPLQJUHIHUHQFHOHYHOV
9FF
DocID024754 Rev 16 69/89
M24SR04-Y M24SR04-G I2C DC and AC parameters
78
Table 77. I2C DC characteristics
Symbol Parameter Test condition Min. Max. Unit
ILI
Input leakage current
(SCL, SDA)
VIN = VSS or VCC
device in Standby mode - ± 2 µA
ILO Output leakage current SDA in Hi-Z, external voltage applied on SDA:
VSS or VCC 2µA
ICC0
Standby power mode
supply current
VCC = 3.3 V, with RF ON - 30
µA
VCC = 3.3 V, with RF OFF - 5
VCC = 5.5 V, with RF ON(1) - 30
VCC = 5.5 V, with RF OFF - 5
ICC1
Supply current
(I2C Session open)
VCC = 3.3 V, with RF ON - 150
µA
VCC = 3.3 V, with RF OFF - 150
VCC = 5.5 V, with RF ON - 150
VCC = 5.5 V, with RF OFF - 150
ICC2
Supply current (2)
(Read binary)
VCC = 3.3 V (fC = 1 MHz), with RF ON (3) -250
µA
VCC = 3.3 V (fC = 1 MHz), with RF OFF (3) -200
VCC = 5.5 V (fC = 1 MHz),with RF ON (3) -250
VCC = 5.5 V (fC = 1 MHz),with RF OFF (3) -200
ICC3
Supply current (2)
(Update binary)
VCC = 3.3 V (fC = 1 MHz),with RF ON (3) -550
µA
VCC = 3.3 V (fC = 1 MHz),with RF OFF (3) -500
VCC = 5.5 V (fC = 1 MHz), with RF ON (3) -550
VCC = 5.5 V (fC = 1 MHz), with RF OFF (3) -500
VIL
Input low voltage
(SDA, SCL)
VCC = 2.7 V (grade Y)
VCC = 2.4 V (grade G)
VCC = 5.5 V
-0.45 0.3
VCC
V
VIH
Input high voltage
(SDA, SCL)
VCC = 2.7 V (grade Y)
VCC = 2.4 V (grade G)
VCC = 5.5 V
0.7 VCC 6.5 V
VIL
Input low voltage
(RF disable)
VCC = 2.7 V (grade Y)
VCC = 2.4 V (grade G)
VCC = 5.5 V
-0.45 V
VIH
Input high voltage
(RF disable)
VCC = 2.7 V (grade Y)
VCC = 2.4 V (grade G)
VCC = 5.5 V
1.4 -V
VOL
Output low voltage (SDA) IOL = 3 mA, VCC = 5.5 V - 0.4 V
Output low voltage (GPO)
IOL = 1 mA,
VCC = 2.7 V (grade Y) or 2.4 V (grade G)
to VCC = 5.5 V
-0.4V
1. When an RF session is Opened, Icc corresponds to the standby power mode.
2. Characterized only.
3. Input levels as defined in Figure 15.
I2C DC and AC parameters M24SR04-Y M24SR04-G
70/89 DocID024754 Rev 16
Table 78. I2C AC characteristics (400 kHz)
Test conditions specified in Table 74
(preliminary data based on design simulations)
Symbol Alt. Parameter Min. Max. Unit
fCfSCL Clock frequency 0.05 400 kHz
tCHCL (1) tHIGH Clock pulse width high 0.6 20000 µs
tCLCH (2) tLOW Clock pulse width low 1.3 20000 µs
tCL_reset - Clock reset 40000 - µs
tXH1XH2 tRInput signal rise time (3) (3) ns
tXL1XL2 t
FInput signal fall time (3) (3) ns
tDL1DL2 tFSDA (out) fall time 20 300 ns
tDXCX tSU:DAT Data in set up time 100 - ns
tCLDX tHD:DAT Data in hold time 0 - ns
tCLQX(4) tDH Data out hold time 100 - ns
tCLQV (5) tAA Clock low to next data valid (access time) - 900 ns
tCHDX (6) tSU:STA Start condition set up time 600 - ns
tDLCL tHD:STA Start condition hold time 600 - ns
tCHDH tSU:STO Stop condition set up time 600 - ns
tDHDL tBUF Time between Stop condition and next Start condition 1300 - ns
tWtWR
I²C write time in one page - 5 ms
I²C write time up to 246 bytes - 90 ms
tNS (7) - Pulse width ignored (input filter on SCL and SDA) - 80 ns
tSTART_OUT - Delay for I²C token release 20 40 ms
1. tCHCL timeout.
2. tCLCH timeout.
3. There is no min. or max. value for the input signal rise and fall times. It is however recommended by the I²C specification that the input
signal rise and fall times be more than 20 ns and less than 300 ns when f
C
< 400 kHz.
4. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of
SDA.
5. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach 0.8VCC in a compatible way with the
I2C specification (which specifies tSU:DAT (min) = 100 ns), assuming that the Rbus × Cbus time constant is less than 500 ns
(as specified in Figure 17).
6. For a restart condition, or following a write cycle.
7. Characterized only, not tested in production.
DocID024754 Rev 16 71/89
M24SR04-Y M24SR04-G I2C DC and AC parameters
78
Table 79. I2C AC characteristics (1 MHz)
Test conditions specified in Table 74
(preliminary data based on design simulations)
Symbol Alt. Parameter Min. Max. Unit
fCfSCL Clock frequency 0.05 1000 kHz
tCHCL (1)
1. tCHCL timeout.
tHIGH Clock pulse width high 260 - ns
tCLCH (2)
2. tCLCH timeout.
tLOW Clock pulse width low 500 - ns
tXH1XH2 tRInput signal rise time (3)
3. There is no min. or max. value for the input signal rise and fall times. It is however recommended by the I²C
specification that the input signal rise and fall times be less than 120 ns when fC < 1 MHz.
(3) ns
tXL1XL2 t
FInput signal fall time (3) (3) ns
tDL1DL2 tFSDA (out) fall time 20 120 ns
tDXCX tSU:DAT Data in set up time 50 - ns
tCLDX tHD:DAT Data in hold time 0 - ns
tCLQX tDH Data out hold time 100 - ns
tCLQV (4)(5)
4. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or
rising edge of SDA.
5. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach 0.8VCC in a
compatible way with the I2C specification (which specifies tSU:DAT (min) = 100 ns), assuming that the Rbus
× Cbus time constant is less than 500 ns (as specified in Figure 17).
tAA Clock low to next data valid (access time) - 450 ns
tCHDX (6)
6. For a reStart condition, or following a write cycle.
tSU:STA Start condition set up time 250 - ns
tDLCL tHD:STA Start condition hold time 250 - ns
tCHDH tSU:STO Stop condition set up time 250 - ns
tDHDL tBUF
Time between Stop condition and next Start
condition 500 - ns
tWtWR
I²C write time in one page - 5 ms
I²C write time up to 246 bytes - 150 ms
tNS (7)
7. Characterized only, not tested in production.
-Pulse width ignored (input filter on SCL and
SDA) -80ns
I2C DC and AC parameters M24SR04-Y M24SR04-G
72/89 DocID024754 Rev 16
Figure 16. I2C AC waveforms
6&/
6'$,Q
6&/
6'$2XW
6&/
6'$,Q
W&+&/
W'/&/
W&+'/
6WDUW
FRQGLWLRQ
W&/&+
W';&+
W&/';
6'$
,QSXW
6'$
&KDQJH
W&+'+ W'+'/
6WRS
FRQGLWLRQ
'DWDYDOLG
W&/49 W&/4;
W&+'+
6WRS
FRQGLWLRQ
W&+'/
6WDUW
FRQGLWLRQ
:ULWHF\FOH
W:
069
6WDUW
FRQGLWLRQ
W&+&/
W;+;+
W;+;+
W;/;/
W;/;/
'DWDYDOLG
W4/4/
n =|-—| -||-H =|-—1
DocID024754 Rev 16 73/89
M24SR04-Y M24SR04-G I2C DC and AC parameters
78
11.1 I2C timing measurement condition
Figure 17 represents the Maximum Rbus value versus bus parasitic capacitance (Cbus) for
an I2C bus at maximum frequency fC = 400 kHz.
Figure 17. Maximum Rbus value with fC = 400 kHz
Figure 18 represents the Maximum Rbus value versus bus parasitic capacitance (Cbus) for
an I2C bus at maximum frequency fC = 1 MHz.
Figure 18. Maximum Rbus value with fC = 1 MHz
AIB


  
"USLINECAPACITORP&
"USLINEPULLUPRESISTOR
K

)£#BUS
MASTER -XXX
2BUS
6##
#BUS
3#,
3$!
2BUS§#BUSNS
(ERE2BUS§#BUSNS
K½
P&
4HE2X#TIMECONSTANT
MUSTBEBELOWTHENS
TIMECONSTANTLINEREPRESENTED
ONTHELEFT
BUS BUS

 
"USLINECAPACITORP&
"USLINEPULLUPRESISTORK 
-36
)£#BUS
MASTER -XXX
2BUS
6##
#BUS
3#,
3$!
(ERE
2BUS
§
#BUS
NS
2BUS§#BUSNS

4HE2BUS§#BUSTIMECONSTANT
MUSTBEBELOWTHENS
TIMECONSTANTLINEREPRESENTED
ONTHELEFT

I2C DC and AC parameters M24SR04-Y M24SR04-G
74/89 DocID024754 Rev 16
Figure 19. I2C bus protocol
6&/
6'$
6&/
6'$
6'$
6WDUW 6'$ 6'$
-36
6WRS
 
06% $&.
6WDUW
6&/  
06% $&.
6WRS
FRQGLWLRQ ,QSXW &KDQJH FRQGLWLRQ
FRQGLWLRQ
FRQGLWLRQ
Table 80. Device select code
Device type identifier (1) Chip Enable address RW
b7 b6 b5 b4 b3 b2 b1 b0
Device select code 1 0 1 0 1 1 0 RW
1. The most significant bit, b7, is sent first.
DocID024754 Rev 16 75/89
M24SR04-Y M24SR04-G GPO parameters
78
12 GPO parameters
This section lists the timing of the GPO according to its configuration.
Table 81. GPO timings measurement(1)
GPO field I/F Condition Command Symbol Typ. Unit
Session Open
0xX1
I2CGPO low when
session active
Kill session CmdSTPtoGPlow
*add 100 µs for boot
after POR
15* µs
Get session 15* µs
I2C GPO return HZ I2C token release
sequence AnswerlbLBtoGPHZ 105 ns
0x1X
RF GPO low when
session active NDEF select CmdEOFtoGPlow 170 µs
RF GPO return HZ Deselect CmdEOFtoGPHZ 370 µs
WIP
0xX2
I2C
GPO low when
programming Update Binary
CmdSTPtoGPlow 45 µs
I2CWriting time duration
(No time extension) 5ms
RF
GPO low when
programming Update Binary
CmdEOFtoGPlow 75 µs
0x2X RF Writing time duration
(No time extension) 5ms
Answer Ready 0xX3
I2C
GPO low when a
command is
computed
ReadBinary
or
UpdateBinary
CmdSTPtoGPlow
55
or
5
µs
ms
I2CGPO return HZ on
new command All commands After NewCmdlbFB
or AnswerlbFB 105 ns
Message In
Progress 0x3X
RF GPO low when
modifying NDEF
UpdateBinary
(Msg Length #0) CmdEOFtoGPlow 75 µs
RF GPO low when
modifying NDEF UpdateBinary Writing time duration
(No time extension) 5ms
Interrupt
0xX4
I2C
GPO low after
receiving an
Interrupt command
SendInterrupt CmdSTPtoGPlow 50 µs
I2C GPO return HZ All commands After NewCmdlbFB
or AnswerlbFB 105 ns
0x4X
RF GPO low after
receiving an
Interrupt command
SendInterrupt
CmdEOFtoGPlow 75 µs
RF Pulse duration 540 µs
GPO parameters M24SR04-Y M24SR04-G
76/89 DocID024754 Rev 16
State Control
0xX5
I2CGPO low when
reset Reset GPO CmdSTPtoGPlow 40 µs
I2CGPO return HZ
when set Set GPO CmdSTPtoGPHZ 40 µs
0x5X
RF GPO low when
reset Reset GPO CmdEOFtoGPlow 60 µs
RF GPO return HZ
when set Set GPO CmdEOFtoGPHZ 60 µs
RF Busy 0x6X
RF
GPO low after
receiving an RF
command
Anticollision
command or start
of RF disturb
(command using
another RF
protocol)
CmdSOFtoGPlow 6 µs
RF
GPO return HZ
after deselection or
RF command in
another protocol
Deselect or end of
RF disturb
(command using
another RF
protocol)
CmdEOFtoGPHZ 460 µs
1. Characterized only.
Table 81. GPO timings measurement(1) (continued)
GPO field I/F Condition Command Symbol Typ. Unit
DocID024754 Rev 16 77/89
M24SR04-Y M24SR04-G Write cycle definition
78
13 Write cycle definition
Table 82. Write cycle definition(1)
Symbol Parameter Test Conditions Min Max Units
Ncycle Write cycle
endurance(2)
TA 25 °C, VCC(min) < VCC < VCC(max) - 1,000,000
Write cycle
TA 85 °C, VCC(min) < VCC < VCC(max) - 600,000
1. A write cycle is calculated per byte, and corresponds to a write to this byte.
2. Write cycle endurance is defined by characterization and qualification.
RF electrical parameters M24SR04-Y M24SR04-G
78/89 DocID024754 Rev 16
14 RF electrical parameters
This section summarizes the operating and measurement conditions, and the DC and AC
characteristics of the device in RF mode.
The parameters in the DC and AC characteristics tables that follow are derived from tests
performed under the Measurement Conditions summarized in the relevant tables.
Designers should check that the operating conditions in their circuit match the measurement
conditions when relying on the quoted parameters.
Table 83. Default operating conditions
Symbol Parameter Min. Max. Unit
TA
Ambient operating temperature for grade 6 –40 85
°C
Ambient operating temperature for grade 5 -25 85
Table 84. RF characteristics (1)
Symbol Parameter Condition Min Typ Max Unit
fCExternal RF signal frequency 13.553 13.56 13.567 MHz
H_ISO Operating field according to ISO TA = 0 °C to 50 °C 1500 - 7500 mA/m
H_Extended Operating field in extended
temperature range TA = -40 °C to 85 °C 500 - 7500 mA/m
MICARRIER 100% carrier modulation index MI=(A-B)/(A+B) 90 - 100 %
t1Pause A length - 28/fC- 40.5/fCµs
t2Pause A low time - 7/fC-t1µs
t3Pause A rise time - 1.5xt4 - 16/fCµs
t4Pause A rise time section - 0 - 6/fCµs
tMIN CD
Minimum time from carrier
generation to first data From H-field min - - 5 ms
Wt
RF write time (including internal
Verify) for one page --6-ms
CTUN Internal tuning capacitor in SO8 (2) fC = 13.56 MHz 22.5 25 27.5 pF
tRF_OFF RF OFF time Chip reset - - 5 ms
1. All timing characterizations were performed on a reference antenna with the following characteristics:
External size: 75 mm x 48 mm
Number of turns: 6
Width of conductor: 0.6 mm
Space between two conductors: 0.6 mm
Value of the tuning capacitor in SO8: 25 pF (M24SR04)
Value of the coil: 5 µH
Tuning frequency: 14.2 MHz.
2. Characterized only, at room temperature only, measured at VAC0-VAC1 = 2 V peak to peak at 13.56 MHz.
DocID024754 Rev 16 79/89
M24SR04-Y M24SR04-G Package information
84
15 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
15.1 SO8N package information
Figure 20. SO8N - 8-lead plastic small outline, 150 mils body width, package outline
1. Drawing is not to scale.
Table 85. SO8N - 8-lead plastic small outline, 150 mils body width,
package data
Symbol
millimeters inches (1)
Min Typ Max Min Typ Max
A - - 1.750 - - 0.0689
A1 0.100 - 0.250 0.0039 - 0.0098
A2 1.250 - 0.0492 - -
b 0.280 - 0.480 0.0110 - 0.0189
c 0.170 - 0.230 0.0067 - 0.0091
D 4.800 4.900 5.000 0.1890 0.1929 0.1969
E 5.800 6.000 6.200 0.2283 0.2362 0.2441
E1 3.800 3.900 4.000 0.1496 0.1535 0.1575
e - 1.270 - - 0.0500 -
h 0.250 - 0.500 0.0098 - 0.0197
k - 8° 0° -
L 0.400 - 1.270 0.0157 - 0.0500
62$B9
%
CCC
B
$
C
%
HX
!
K
PP
,
!
*$8*(3/$1(
E
!
,
7 a M M %
Package information M24SR04-Y M24SR04-G
80/89 DocID024754 Rev 16
Figure 21. SO8N - 8-lead plastic small outline, 150 mils bosy width,
package recommended footprint
L1 - 1.040 - - 0.0409 -
ccc - - 0.100 - - 0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 85. SO8N - 8-lead plastic small outline, 150 mils body width,
package data (continued)
Symbol
millimeters inches (1)
Min Typ Max Min Typ Max
2B621B)3B9

[


HHHH v 5??
DocID024754 Rev 16 81/89
M24SR04-Y M24SR04-G Package information
84
15.2 TSSOP8 package information
Figure 22. TSSOP8 – 8-lead thin shrink small outline, 3 x 6.4 mm, 0.65 mm pitch,
package outline
1. Drawing is not to scale.
/ Table 86. TSSOP8 – 8-lead thin shrink small outline, 3 x 6.4 mm, 0.65 mm pitch,
package mechanical data
Symbol
millimeters inches (1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Typ Min Max Typ Min Max
A - - 1.200 - - 0.0472
A1 0.050 - 0.150 0.0020 - 0.0059
A2 0.800 1.000 1.050 0.0315 0.0394 0.0413
b 0.190 - 0.300 0.0075 - 0.0118
c 0.090 - 0.200 0.0035 - 0.0079
CP - - 0.100 - - 0.0039
D 2.900 3.000 3.100 0.1142 0.1181 0.1220
e - 0.650 - - 0.0256 -
E 6.200 6.400 6.600 0.2441 0.2520 0.2598
E1 4.300 4.400 4.500 0.1693 0.1732 0.1772
L 0.450 0.600 0.750 0.0177 0.02636 0.0295
L1 - 1.000 - - 0.0394 -
α 8° 0° -
76623$0B9
ϭ
W
Đ
>
ɲ
Ğ
ϰ
ϭ
Ϯ
ď
ϴϱ
ϭ
+ II. ECU
Package information M24SR04-Y M24SR04-G
82/89 DocID024754 Rev 16
15.3 UFDFPN8 package information
Figure 23. UFDFPN8 - 8-lead, 2 x 3 mm, 0.5 mm pitch ultra thin profile fine pitch
dual flat package outline
1. Max package warpage is 0.05 mm.
2. Exposed copper is not systematic and can appear partially or totally according to the cross section.
3. Drawing is not to scale.
4. The central pad (the area E2 by D2 in the above illustration) must be either connected to VSS or left floating
(not connected) in the end application.
=:EB0(B9
7RSYLHZ
3LQ
,'PDUNLQJ
6LGHYLHZ
6HDWLQJSODQH
HHH
FFF
&
&
&
&
%
$
1
'
(
DDD
DDD
$
$
$
[
[
'DWXP$
7HUPLQDOWLS
'HWDLO³$´
(YHQWHUPLQDO
/
//
H
H
3LQ
,'PDUNLQJ
%RWWRPYLHZ 6HH'HWDLO³$´
H
H

1'[
'
/
/
(
.
/
E
DocID024754 Rev 16 83/89
M24SR04-Y M24SR04-G Package information
84
Table 87. UFDFPN8 - 8- lead, 2 x 3 mm, 0.5 mm pitch ultra thin profile fine pitch
dual flat package mechanical data
Symbol
millimeters inches (1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.450 0.550 0.600 0.0177 0.0217 0.0236
A1 0.000 0.020 0.050 0.0000 0.0008 0.0020
b(2)
2. Dimension b applies to plated terminal and is measured between 0.15 and 0.30 mm from the terminal tip.
0.200 0.250 0.300 0.0079 0.0098 0.0118
D 1.900 2.000 2.100 0.0748 0.0787 0.0827
D2 (rev MC) 1.200 - 1.600 0.0472 - 0.0630
E 2.900 3.000 3.100 0.1142 0.1181 0.1220
E2 (rev MC) 1.200 - 1.600 0.0472 - 0.0630
e - 0.500 - - 0.0197 -
K (rev MC) 0.300 - - 0.0118 - -
L 0.300 - 0.500 0.0118 - 0.0197
L1 - - 0.150 - - 0.0059
L3 0.300 - - 0.0118 - -
aaa - - 0.150 - - 0.0059
bbb - - 0.100 - - 0.0039
ccc - - 0.100 - - 0.0039
ddd - - 0.050 - - 0.0020
eee (3)
3. Applied for exposed die paddle and terminals. Exclude embedded part of exposed die paddle from
measuring.
- - 0.080 - - 0.0031
j
Ordering information M24SR04-Y M24SR04-G
84/89 DocID024754 Rev 16
16 Ordering information
Note: Parts marked as ES or E are not yet qualified and therefore not approved for use in
production. ST is not responsible for any consequences resulting from such use. In no event
will ST be liable for the customer using any of these engineering samples in production.
ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
Table 88. Ordering information scheme for packaged devices
Example: M24 SR 04- Y MN 6 T /2
Device type
M24 = I2C interface device
Device feature
SR = Short range
Memory size
04 = memory size in Kbits
Voltage range
Y = 2.7 to 5.5 V
G = 2.4 to 5.5 V, only available in grade 5 (-25 to 85 °C)
Package
MN = SO8N
DW = TSSOP8
MC = UFDFPN8
SG12I = 120 µm ± 15 µm bumped and sawn inkless wafer on 8-inch frame(1)
1. SG12I is only available for voltage range “G”.
Device grade
5 = industrial: device tested with standard test flow over -25 to 85 °C
6 = industrial: device tested with standard test flow over –40 to 85 °C
(No parameter for SG12I)
Option
T = Tape and reel packing
(No parameter for SG12I)
Capacitance
/2 = 25 pF
DocID024754 Rev 16 85/89
M24SR04-Y M24SR04-G Revision history
88
17 Revision history
Table 89. Document revision history
Date Revision Changes
13-Jun-2013 1 Initial release.
29-Aug-2013 2
Added UFDFPN8 drawing on page 1.
Edited Section 2.6: RF disable.
Updated ICC0 parameter in Table 77: I2C DC characteristics and added a note.
Added Section 15.3: UFDFPN8 package information and UFDFPN8 package.
28-Oct-2013 3
Updated the Capacitance value to 25 pF.
Removed all “Battery assisted” and “Wire power management” information (conditioned
for a future use).
Moved GetI2Csession command before Section 5.10.2: KillRFsession command.
Added 2 new sections: Section 7.4: I²C token release sequence and Section 7.5: I²C
timeout on clock period.
Removed “DID field” information from Section 7.9: I²C frame format and from Table 69
to Table 71
Updated different values in Table 73: Absolute maximum ratings, Table 74: I2C
operating conditions, Table 77: I2C DC characteristics, Table 78: I2C AC characteristics
(400 kHz), Table 79: I2C AC characteristics (1 MHz), and Table 84: RF characteristics,
and removed all “(forecast data)” from the table titles.
Moved RF characteristics table before Table 84: RF characteristics, deleted footnote (1)
and updated footnote (2).
Fully edited.
08-Nov-2013 4 Added a note to Section 7.1: I2C communication protocol below Figure 12: Command
and response exchange.
18-Dec-2013 5
Changed the datasheet status from “Preliminary data” to “Production data”.
Restored the whole content of Table 77: I2C DC characteristics.
Updated the capacitor values in Section 2.5.1: Operating supply voltage VCC.
Removed bullet (4) from Section 8.6: Reaching the read-only state for an NDEF file.
Updated VESD value in Table 73: Absolute maximum ratings, ICC values in Table 77:
I2C DC characteristics, and H_Extended value in Table 84: RF characteristics.
Added details to “S(WTX)” bullet in Section 5.4: S-Block format.
Added sentences to Section 5.6.8: UpdateBinary command and to Section 5.8.3:
DisablePermanentState command.
Changed ‘0x001E’ value into ‘0x001F’ in Table 56: StateControl command format.
Updated values in Table 61: ATS response.
Added Note (4) to Figure 10: Changing the read access right to an NDEF file and
Figure 11: Changing the write access right to an NDEF file.
Revision history M24SR04-Y M24SR04-G
86/89 DocID024754 Rev 16
26-Feb-2014 6
Updated Figure 5: GPO configured as I2C answer ready (GPO field = 0xX3) and
Figure 8: GPO configured as State Control (GPO field = 0xX5 or 0x5X).
Added I2C text to the Note below Table 22: S-Block detailed format.
Edited the third paragraph of Section 5.8.1: ExtendedReadBinary command.
Added Section 5.8.4: UpdateFileType command and Section 8.8: Changing a File
type Procedure.
Updated bullet 3 in Section 7.9: I²C frame format, and the Payload row of Table 70: I2C
host to M24SR04. Updated bullet 2 in Section 7.11: Close the I²C session.
Edited VIO row and removed VESD (machine model) row from Table 73: Absolute
maximum ratings.
Updated ICC rows and added a Note to Table 77: I2C DC characteristics.
Updated Figure 20: SO8N - 8-lead plastic small outline, 150 mils body width, package
outline.
Fixed a typo in Figure 23: UFDFPN8 - 8-lead, 2 x 3 mm, 0.5 mm pitch ultra thin profile
fine pitch dual flat package outline title: UFDPFN8 changed into UFDFPN8.
11-Jun-2014 7
Added data for automotive grade in Table 6: Field list and Table 72: UID format
Added WFDFPN8 package for automotive grade under qualification
Added Figure 24: WFDFPN8 (MLP8) 8-lead, 2 x 3 mm, 0.5 mm pitch very thin fine pitch
dual flat package outline
Added WFDFPN8 package for automotive grade under qualification
Added Table 88: WFDFPN8 8-lead thin fine pitch dual flat package no lead mechanical
data
Added MF = WFDFPN8 inside Table 88: Ordering information scheme for packaged
devices
Inserted byte <04> between A4 and 00 inside Figure 14: NDEF tag Application
Select command
20-Nov-2014 8
Added:
New Root Part Number on cover page
single supply voltage for I2C for grade G and note (1)
Updated:
Figure 14
Figure 73,Figure 74, Figure 77, Figure 78, Figure 83, Figure 88
20-Aug-2015 9
Added
Figure 21: SO8N - 8-lead plastic small outline, 150 mils bosy width, package
recommended footprint
Updated
Section 15: Package information
Table 73: Absolute maximum ratings
Table 74: I2C operating conditions
Table 78: I2C AC characteristics (400 kHz)
Table 88: Ordering information scheme for packaged devices
Table 89. Document revision history (continued)
Date Revision Changes
DocID024754 Rev 16 87/89
M24SR04-Y M24SR04-G Revision history
88
04-Mar-2016 10
Updated:
Features
Section 2.7.6: State Control configuration (GPO field = 0xX5 or 0x5X)
Added:
Table 7: Details about I2C watchdog
Table 82: Write cycle definition
27-Apr-2016 11
Updated:
Features
Table 73: Absolute maximum ratings
Table 82: Write cycle definition
Added:
Section 13: Write cycle definition
14-Oct-2016 12
Updated:
Section 3.2.2: Changing the read access right to NDEF files
Section 3.2.3: Changing the write access right to NDEF files
Section 5.6.5: NDEF Select command
Section 5.8.4: UpdateFileType command
Section 5.8.5: SendInterrupt command
Section 8.2: Reading of an NDEF message
Section 8.5: Unlocking an NDEF file
Section 8.6: Reaching the read-only state for an NDEF file
Section 16: Ordering information
Added:
Section 8.9: Updating a NDEF file
18-Nov-2016 13
Updated:
Table 35: R-APDU of the ReadBinary command
Table 47: R-APDU of the ExtendedReadBinary command
Table 88: Ordering information scheme for packaged devices
07-Feb-2017 14
Added:
Note 4. on Figure 23.: UFDFPN8 - 8-lead, 2 x 3 mm, 0.5 mm pitch ultra thin profile
fine pitch dual flat package outline
Updated:
Table 88: Ordering information scheme for packaged devices
Table 89. Document revision history (continued)
Date Revision Changes
Revision history M24SR04-Y M24SR04-G
88/89 DocID024754 Rev 16
08-Feb-2017 15
Package SB12I replaced with SG12I.
Updated:
Table 73: Absolute maximum ratings
Table 88: Ordering information scheme for packaged devices
12-Sep-2017 16
Updated:
Features
Table 6: Field list
Table 20: R-Block detailed format
Table 72: UID format
Table 74: I2C operating conditions
Table 78: I2C AC characteristics (400 kHz)
Table 86: TSSOP8 – 8-lead thin shrink small outline, 3 x 6.4 mm, 0.65 mm pitch,
package mechanical data
Table 88: Ordering information scheme for packaged devices
Figure 10: Changing the read access right to an NDEF file
Figure 11: Changing the write access right to an NDEF file
Figure 15: AC test measurement I/O waveform
Figure 16: I2C AC waveforms
Figure 19: I2C bus protocol
Figure 22: TSSOP8 – 8-lead thin shrink small outline, 3 x 6.4 mm, 0.65 mm pitch,
package outline
Section 16: Ordering information
Deleted:
Section 15.4: WFDFPN8 package information
Figure 24: WFDFPN8 (MLP8) 8-lead, 2 x 3 mm, 0.5 mm pitch very thin fine pitch dual
flat package outline
Table 88: WFDFPN8 8-lead thin fine pitch dual flat package no lead mechanical data
Table 89. Document revision history (continued)
Date Revision Changes
DocID024754 Rev 16 89/89
M24SR04-Y M24SR04-G
89
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved

Products related to this Datasheet

IC RFID TRANSP 13.56MHZ 8UFDFPN
IC RFID TRANSP 13.56MHZ 8TSSOP
KIT EVAL PREMIUM EDITION MEM
KIT EVAL MATRIX ANTENNA
KIT EVAL STD EDITION MEMORY
IC RFID TRANSP 13.56MHZ 8SO
IC RFID TRANSP 13.56MHZ 8TSSOP
IC RFID TRANSP 13.56MHZ 8UFDFPN
IC RFID TRANSP 13.56MHZ 8SO
IC RFID TRANSP 13.56MHZ 8TSSOP
IC RFID TRANSP 13.56MHZ 8UFDFPN
IC RFID TRANSP 13.56MHZ 8SO
IC RFID TRANSP 13.56MHZ 8UFDFPN
IC RFID TRANSP 13.56MHZ 8UFDFPN
IC RFID TRANSP 13.56MHZ 8UFDFPN