IRL40B215 Datasheet by Infineon Technologies

View All Related Products | Download PDF Datasheet
International IézR Rectifier TO-ZZDAB IRLADth 5 G D Submit Datasheet Feedback
StrongIRFET™
IRL40B215
HEXFET® Power MOSFET
D
S
G
Application
Brushed Motor drive applications
BLDC Motor drive applications
Battery powered circuits
Half-bridge and full-bridge topologies
Synchronous rectifier applications
Resonant mode power supplies
OR-ing and redundant power switches
DC/DC and AC/DC converters
DC/AC Inverters
Benefits
Optimized for Logic Level Drive
Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
Fully Characterized Capacitance and Avalanche SOA
Enhanced body diode dV/dt and dI/dt Capability
Lead-Free*
RoHS Compliant, Halogen-Free
VDSS 40V
RDS(on) typ. 2.2m
max 2.7m
ID (Silicon Limited) 164A
ID (Package Limited) 120A
Fig 1. Typical On-Resistance vs. Gate Voltage Fig 2. Maximum Drain Current vs. Case Temperature
TO-220AB
IRL40B215
S
D
G
G D S
Gate Drain Source
Base part number Package Type Standard Pack
Form Quantity
IRL40B215 TO-220 Tube 50 IRL40B215
Orderable Part Number
1 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 27, 2015
2 4 6 8 10 12 14 16 18 20
VGS, Gate -to -Source Voltage (V)
0
3
6
9
12
RDS(on)
, Drain-to -Source On Resistance (m
)
ID = 98A
TJ = 25°C
TJ = 125°C
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
25
50
75
100
125
150
175
ID, Drain Current (A)
Limited By Package
I‘DR — Parameter Tsm Avalanche Characteristics EAS ermz‘ mm IAR EAR Thermal Resistance S bol Parameter V55 V55 = 10V, ID D Ves, lo - www.irf.com Submi‘ Darasheer Feedback
2 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 27, 2015
IRL40B215
Notes:
Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that
Current imitations arising from heating of the device leads may occur with some lead mounting arrangements.
(Refer to AN-1140)
Repetitive rating; pulse width limited by max. junction temperature.
Limited by TJmax, starting TJ = 25°C, L = 0.033mH, RG = 50, IAS = 98A, VGS =10V.
ISD 98A, di/dt 1005A/µs, VDD V(BR)DSS, TJ 175°C.
Pulse width 400µs; duty cycle 2%.
Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
R is measured at TJ approximately 90°C.
Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50, IAS = 28A, VGS =10V.
Pulse drain current is limited at 480A by source bonding technology.
Absolute Maximum Rating
Symbol Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 164
A
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 116
IDM Pulsed Drain Current  656
PD @TC = 25°C Maximum Power Dissipation 143 W
Linear Derating Factor 0.95 W/°C
VGS Gate-to-Source Voltage ± 20 V
TJ
TSTG
Operating Junction and
Storage Temperature Range
-55 to + 175 °C
Soldering Temperature, for 10 seconds (1.6mm from case) 300
Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m)
Avalanche Characteristics
EAS (Thermally limited) Single Pulse Avalanche Energy  161 mJ
EAS (Thermally limited) Single Pulse Avalanche Energy  386
IAR Avalanche Current See Fig 15, 16, 23a, 23b A
EAR Repetitive Avalanche Energy mJ
Thermal Resistance
Symbol Parameter Typ. Max. Units
RJC Junction-to-Case  ––– 1.05
°C/W
RCS Case-to-Sink, Flat Greased Surface 0.50 –––
RJA Junction-to-Ambient ––– 62
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited) 120
Static @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 40 ––– ––– V VGS = 0V, ID = 250µA
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.033 ––– V/°C Reference to 25°C, ID = 5mA
RDS(on) ––– 2.2 2.7 m VGS = 10V, ID = 98A
––– 2.8 3.5 VGS = 4.5V, ID = 49A
VGS(th) Gate Threshold Voltage 1.0 ––– 2.4 V VDS = VGS, ID = 100µA
IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA VDS =40 V, VGS = 0V
––– ––– 150 VDS =40V,VGS = 0V,TJ =125°C
IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -100 VGS = -20V
RG Gate Resistance ––– 2.0 ––– 
Static Drain-to-Source On-Resistance
I93 — Submi‘ Da‘ashee‘ Feedback
3 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 27, 2015
IRL40B215
D
S
G
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units Conditions
gfs Forward Transconductance 176 ––– ––– S VDS = 10V, ID = 98A
Qg Total Gate Charge ––– 56 84 ID = 98A
Qgs Gate-to-Source Charge ––– 15 ––– VDS = 20V
Qgd Gate-to-Drain Charge ––– 30 ––– VGS = 4.5V
Qsync Total Gate Charge Sync. (Qg– Qgd) ––– 26 –––
td(on) Turn-On Delay Time ––– 21 –––
ns
VDD = 20V
tr Rise Time ––– 110 ––– ID = 30A
td(off) Turn-Off Delay Time ––– 63 ––– RG= 2.7
tf Fall Time ––– 62 ––– VGS = 4.5V
Ciss Input Capacitance ––– 5225 –––
pF
VGS = 0V
Coss Output Capacitance ––– 651 ––– VDS = 25V
Crss Reverse Transfer Capacitance ––– 460 ––– ƒ = 1.0MHz, See Fig.7
Coss eff.(ER) Effective Output Capacitance (Energy Related) ––– 777 ––– VGS = 0V, VDS = 0V to 32V
Coss eff.(TR) Output Capacitance (Time Related) ––– 963 ––– VGS = 0V, VDS = 0V to 32V
Diode Characteristics
Symbol Parameter Min. Typ. Max. Units Conditions
IS Continuous Source Current ––– ––– 164
A
MOSFET symbol
(Body Diode) showing the
ISM Pulsed Source Current ––– ––– 656 integral reverse
(Body Diode) p-n junction diode.
VSD Diode Forward Voltage ––– 0.9 1.2 V TJ = 25°C,IS = 98A,VGS = 0V
dv/dt Peak Diode Recovery dv/dt  ––– 4.3 ––– V/ns TJ = 175°C,IS = 98A,VDS = 40V
trr Reverse Recovery Time ––– 27 –––
ns TJ = 25°C VDD = 34V
––– 29 ––– TJ = 125°C IF = 98A,
Qrr Reverse Recovery Charge ––– 23 –––
nC TJ = 25°C di/dt = 100A/µs
––– 25 ––– TJ = 125°C
IRRM Reverse Recovery Current ––– 1.5 ––– A TJ = 25°C
nC
DS Submn Da‘ashee‘ Feedback
4 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 27, 2015
IRL40B215
Fig 6. Normalized On-Resistance vs. Temperature
Fig 5. Typical Transfer Characteristics
Fig 4. Typical Output Characteristics
Fig 3. Typical Output Characteristics
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
0.1 110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
6.0V
5.0V
4.5V
4.0V
BOTTOM 3.5V
60µs PULSE WIDTH
Tj = 25°C
3.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
6.0V
5.0V
4.5V
4.0V
BOTTOM 3.5V
60µs PULSE WIDTH
Tj = 175°C
3.5V
0 2 4 6 8 10
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
TJ = 25°C
TJ = 175°C
VDS = 10V
60µs PULSE WIDTH
-60 -20 20 60 100 140 180
TJ , Junction Temperature (°C)
0.6
1.0
1.4
1.8
2.2
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 98A
VGS = 10V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0 20 40 60 80 100 120 140
QG, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
VGS, Gate-to-Source Voltage (V)
VDS= 32V
VDS= 20V
VDS= 8V
ID= 98A
Fig 8. Typical Gate Charge vs.
Gate-to-Source Voltage
PERAT‘ON IN THIS Tc : 25%: T] : 175‘s VGS 4.5V —VGS : 5.0V A Submn Da‘ashee‘ Feedback
5 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 27, 2015
IRL40B215
Fig 10. Maximum Safe Operating Area
Fig 9. Typical Source-Drain Diode Forward Voltage
Fig 13. Typical On-Resistance vs. Drain Current
Fig 11. Drain-to-Source Breakdown Voltage Fig 12. Typical Coss Stored Energy
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
-5 0 5 10 15 20 25 30 35 40 45
VDS, Drain-to-Source Voltage (V)
0.00
0.10
0.20
0.30
0.40
0.50
0.60
Energy (µJ)
-60 -20 20 60 100 140 180
TJ , Temperature ( °C )
40
42
44
46
48
50
52
V(BR)DSS, Drain-to-Source Breakdown Voltage (V)
Id = 5.0mA
050 100 150 200
ID, Drain Current (A)
1
3
5
7
9
RDS(on), Drain-to -Source On Resistance (
m)
VGS = 3.5V
VGS = 4.0V
VGS = 4.5V
VGS = 8.0V
VGS = 10V
0.1 1 10
VDS, Drain-toSource Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
DC
Limited By Package
SWGLE FULS has. 1 Duty Factor D : «1/12 puxsew‘dm tav‘ assummg vs ava‘am: puxsewmm, (av, Submn Da‘ashee‘ Feedback
6 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 27, 2015
IRL40B215
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 16. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1.Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for every
part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not
exceeded.
3. Equation below based on circuit and waveforms shown in Figures
23a, 23b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage
increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax
(assumed as 25°C in Figure 14, 15).
t
av = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
Z
thJC(D, tav) = Transient thermal resistance, see Figures 14)
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC
I
av = 2T/ [1.3·BV·Zth]
E
AS (AR) = PD (ave)·tav
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
10
Thermal Response ( Z
thJC ) °C/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
20
40
60
80
100
120
140
160
180
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 98A
Fig 15. Avalanche Current vs. Pulse Width
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
0.1
1
10
100
1000
Avalanche Current (A)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  j = 25°C and
Tstart = 150°C.
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart = 25°C (Single Pulse)
/ //"/ / /// / \/ |D:100uA ID7250uA _ID710mA //)< ¢="" v="" i="" i="" o="" a="" a="" '="" i="" i="" i="" i="" i="" i="" submn="" da‘ashee‘="" feedback="">
7 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 27, 2015
IRL40B215
Fig 17. Threshold Voltage vs. Temperature
Fig 21. Typical Stored Charge vs. dif/dt
Fig 18. Typical Recovery Current vs. dif/dt
Fig 19. Typical Recovery Current vs. dif/dt Fig 20. Typical Stored Charge vs. dif/dt
-75 -25 25 75 125 175
TJ , Temperature ( °C )
0.5
1.0
1.5
2.0
2.5
VGS(th), Gate threshold Voltage (V)
ID = 100µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
0200 400 600 800
diF /dt (A/µs)
0
1
2
3
4
5
6
7
IRRM (A)
IF = 66A
VR = 34V
TJ = 25°C
TJ = 125°C
0200 400 600 800
diF /dt (A/µs)
0
1
2
3
4
5
6
7
IRRM (A)
IF = 98A
VR = 34V
TJ = 25°C
TJ = 125°C
0200 400 600 800
diF /dt (A/µs)
0
20
40
60
80
100
120
QRR (nC)
IF = 66A
VR = 34V
TJ = 25°C
TJ = 125°C
0200 400 600 800
diF /dt (A/µs)
0
20
40
60
80
100
QRR (nC)
IF = 98A
VR = 34V
TJ = 25°C
TJ = 125°C
Q ”mantis-Imus . menu/Mm." . ems-19mg . mmmmmm cur-unnum— WTT D.U.T 1—} ® 55 4 Ffl -> 6’ x»— I "“ 'fih \l'L . mnmnudbyflg .muanmunw . ImulldlflbymyF-IGV . our rmunhhll Van "u wan / u M J) um 15., mm MW mm“ amm/ i can v“s mum-n / mm\71 mmhmm :1“ mumDn-I WM~ Paar _ 5-» 'm PT vv— 7 : ll 1 1; Q5 Y V ”a VB; V55 7 "a KE‘ Wm ,, --:vm 9m 7 L [I ‘ Om BUT I l ' V13 = 5V fa Logic Lave! Devices #7 4» Vns 90% \ \ \ ‘W" x \ v53 P\_4 Mm) G Wu 11 Submit Da‘ashee‘ Feedback
8 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 27, 2015
IRL40B215
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Fig 23a. Unclamped Inductive Test Circuit
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
Fig 24a. Switching Time Test Circuit
Fig 25a. Gate Charge Test Circuit
tp
V
(BR)DSS
I
AS
Fig 23b. Unclamped Inductive Waveforms
Fig 24b. Switching Time Waveforms
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Fig 25b. Gate Charge Waveform
VDD
.[2 _# / . w a .,j , mm» [m , .mm , H HM [mm] , ‘ , w VLLE‘l ‘ ‘7 HLI: LVLH LVLVH ‘ [\EWEEH‘ ,[ ‘ VI: V[r[[ FVHIZLVV‘ ‘ 1 , rm rim w ‘ , WE ‘ , “mm“ m g ‘ , m [mm ‘ ‘Hmirum ‘ , mu, (”Hr ‘ “my WM, m 7—1 \[\ “m ‘ L \LUUE \HE f ‘ , w 7 u 4'4“” ‘ ‘ , ‘ ‘ , ‘ ,WH ‘ m H ‘ . ‘ L w ‘ L L ‘ L \ 4t «,7 w w , M hm; [www Irf com/geckage/ Submn Da‘ashee‘ Feedback
9 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 27, 2015
IRL40B215
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
IN T E R N A T IO N A L PART NUMBER
R E C T IF IE R
LO T C O D E
ASSEM BLY
LO G O
YEAR 0 = 2000
DATE CODE
W EEK 19
LIN E C
LOT CODE 1789
E X A M P L E : T H IS IS A N IR F 1 0 1 0
N o te : "P " in a s s e m b ly lin e p o s itio n
indicates "Lead - Free"
IN TH E ASSEM BLY LIN E "C"
ASSEM BLED O N W W 19, 2000
TO-220AB packages are not recommended for Surface Mount Application.
ICDR Qualification lnformation' http://www Hf com/moduct-info/rehabiiiiy/ International IEBR Rectifier hug://www.irf.com/whoio-cai|/ Submii Daiasheei Feedback
10 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 27, 2015
IRL40B215
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
†† Applicable version of JEDEC standard at the time of product release.
Qualification Information
Qualification Level
Industrial
(per JEDEC JESD47F) ††
Moisture Sensitivity Level TO-220 N/A
RoHS Compliant Yes
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/

Products related to this Datasheet

MOSFET N-CH 40V 120A