NSIC2050JBT3G Datasheet by ON Semiconductor

View All Related Products | Download PDF Datasheet
© Semiconductor Components Industries, LLC, 2014
April, 2014 − Rev. 1 1Publication Order Number:
NSIC2050JB/D
NSIC2050JBT3G
Constant Current Regulator
& LED Driver for A/C off-line
Applications
120 V, 50 mA + 15%, 3 W Package
The linear constant current regulator (CCR) is a simple, economical
and robust device designed to provide a cost−effective solution for
regulating current in LEDs (similar to Constant Current Diode, CCD).
The CCR is based on Self−Biased Transistor (SBT) technology and
regulates current over a wide voltage range. It is designed with a
negative temperature coefficient to protect LEDs from thermal
runaway at extreme voltages and currents.
The CCR turns on immediately and is at 20% of regulation with
only 0.5 V Vak. It requires no external components allowing it to be
designed as a high or low−side regulator.
The 120 V anode−cathode voltage rating is designed to withstand
the high peak voltage incurred in A/C offline applications. The high
anode−cathode voltage rating withstands surges common in
Automotive, Industrial and Commercial Signage applications.
Features
Robust Power Package: 2.3 W
Wide Operating Voltage Range
Immediate Turn-On
Voltage Surge Suppressing − Protecting LEDs
UL94−V0 Certified
SBT (Self−Biased Transistor) Technology
Negative Temperature Coefficient
Also available in 30 mA (NSIC2030JBT1G) and 20 mA
(NSIC2020JBT1G)
NSV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q101
Qualified and PPAP Capable
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
Typical Applications and Reference/Design Documents
Automobile: Chevron Side Mirror Markers, Cluster, Displays &
Instruments Backlighting, CHMSL, Map Light
AC Lighting Panels, Display Signage, Decorative Lighting, Channel
Lettering
Application Note AND8349/D – Automotive CHMSL
Application Notes AND8391/D, AND9008/D − Power Dissipation
Considerations
Application Note AND8433/D – A/C Application
Application Note AND8492/D – A/C Capacitive Drop Design
Application Note AND9098/D − Protecting a CCR from ISO 7637−2
Pulse 2A and Reverse Pulses
Design Note DN05013 – A/C Design
Design Note DN06065 – A/C Design with PFC
http://onsemi.com
SMB
CASE 403A
MARKING DIAGRAM
Device Package Shipping
ORDERING INFORMATION
NSIC2050JBT3G SMB
(Pb−Free)
2500 / Tape &
Reel
For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specification
s
Brochure, BRD8011/D.
(Note: Microdot may be in either location)
Ireg(SS) = 50 mA
@ Vak = 7.5 V
2050J = Specific Device Code
A = Assembly Location
Y = Year
WW = Work Week
G= Pb−Free Package
AYWW
2050JG
G
Anode 2
Cathode 1
1
2
12
NSVC2050JBT3G SMB
(Pb−Free)
2500 / Tape &
Reel
2? E Z 9 )— < _l="" d="" 0="" nj="" ce="" .—="" z="" m="" a:="" ii="" d="" o="" 6="" m="" e="" vak="" max="" vak,="" anode-cathode="" voltage="" (v)="">
NSIC2050JBT3G
http://onsemi.com
2
MAXIMUM RATINGS (TA = 25°C unless otherwise noted)
Rating Symbol Value Unit
Anode−Cathode Voltage Vak Max 120 V
Reverse Voltage VR500 mV
Operating Junction and Storage Temperature Range TJ, Tstg −55 to +175 °C
ESD Rating: Human Body Model
Machine Model
ESD Class 3A (4000 V)
Class C (400 V)
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
Steady State Current @ Vak = 7.5 V (Note 1) Ireg(SS) 42.5 50 57.5 mA
Voltage Overhead (Note 2) Voverhead 1.8 V
Pulse Current @ Vak = 7.5 V (Note 3) Ireg(P) 48.1 57.4 66.7 mA
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
1. Ireg(SS) steady state is the voltage (Vak) applied for a time duration 80 sec, using 100 mm2 , 1 oz. Cu (or equivalent), in still air.
2. Voverhead = Vin − VLEDs. Voverhead is typical value for 80% Ireg(SS).
3. Ireg(P) non−repetitive pulse test. Pulse width t 360 msec.
Figure 1. CCR Voltage−Current Characteristic
NSIC2050JBT3G
http://onsemi.com
3
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Total Device Dissipation (Note 1) TA = 25°C
Derate above 25°CPD1210
8.0 mW
mW/°C
Thermal Resistance, Junction−to−Ambient (Note 1) RθJA 124 °C/W
Thermal Reference, Junction−to−Tab (Note 1) RψJL 17.5 °C/W
Total Device Dissipation (Note 2) TA = 25°C
Derate above 25°CPD1282
8.5 mW
mW/°C
Thermal Resistance, Junction−to−Ambient (Note 2) RθJA 117 °C/W
Thermal Reference, Junction−to−Tab (Note 2) RψJL 18.2 °C/W
Total Device Dissipation (Note 3) TA = 25°C
Derate above 25°CPD1667
11.1 mW
mW/°C
Thermal Resistance, Junction−to−Ambient (Note 3) RθJA 90 °C/W
Thermal Reference, Junction−to−Tab (Note 3) RψJL 16.4 °C/W
Total Device Dissipation (Note 4) TA = 25°C
Derate above 25°CPD1765
11.8 mW
mW/°C
Thermal Resistance, Junction−to−Ambient (Note 4) RθJA 85 °C/W
Thermal Reference, Junction−to−Tab (Note 4) RψJL 16.7 °C/W
Total Device Dissipation (Note 5) TA = 25°C
Derate above 25°CPD1948
13 mW
mW/°C
Thermal Resistance, Junction−to−Ambient (Note 5) RθJA 77 °C/W
Thermal Reference, Junction−to−Tab (Note 5) RψJL 15.5 °C/W
Total Device Dissipation (Note 6) TA = 25°C
Derate above 25°CPD2055
12.7 mW
mW/°C
Thermal Resistance, Junction−to−Ambient (Note 6) RθJA 73 °C/W
Thermal Reference, Junction−to−Tab (Note 6) RψJL 15.6 °C/W
Total Device Dissipation (Note 7) TA = 25°C
Derate above 25°CPD2149
14.3 mW
mW/°C
Thermal Resistance, Junction−to−Ambient (Note 7) RθJA 69.8 °C/W
Thermal Reference, Junction−to−Tab (Note 7) RψJL 14.8 °C/W
Total Device Dissipation (Note 8) TA = 25°C
Derate above 25°CPD2269
15.1 mW
mW/°C
Thermal Resistance, Junction−to−Ambient (Note 8) RθJA 66.1 °C/W
Thermal Reference, Junction−to−Tab (Note 8) RψJL 14.8 °C/W
Total Device Dissipation (Note 9) TA = 25°C
Derate above 25°CPD2609
17.4 mW
mW/°C
Thermal Resistance, Junction−to−Ambient (Note 9) RθJA 57.5 °C/W
Thermal Reference, Junction−to−Tab (Note 9) RψJL 13.9 °C/W
Total Device Dissipation (Note 10) TA = 25°C
Derate above 25°CPD2500
16.7 mW
mW/°C
Thermal Resistance, Junction−to−Ambient (Note 10) RθJA 60 °C/W
Thermal Reference, Junction−to−Tab (Note 10) RψJL 16 °C/W
Total Device Dissipation (Note 11) TA = 25°C
Derate above 25°CPD3000
20 mW
mW/°C
Thermal Resistance, Junction−to−Ambient (Note 11) RθJA 50 °C/W
Thermal Reference, Junction−to−Tab (Note 11) RψJL 16 °C/W
NOTE: Lead measurements are made by non−contact methods such as IR with treated surface to increase emissivity to 0.9.
Lead temperature measurement by attaching a T/C may yield values as high as 30% higher °C/W values based upon empirical
measurements and method of attachment.
1. 100 mm2, 1 oz. Cu, still air.
2. 100 mm2, 2 oz. Cu, still air.
3. 300 mm2, 1 oz. Cu, still air.
4. 300 mm2, 2 oz. Cu, still air.
5. 500 mm2, 1 oz. Cu, still air.
6. 500 mm2, 2 oz. Cu, still air.
7. 700 mm2, 1 oz. Cu, still air.
8. 700 mm2, 2 oz. Cu, still air.
9. 1000 mm2, 3 oz. Cu, still air.
10.400 mm2, PCB is DENKA K1, 1.5 mm Al, 2kV Thermally conductive dielectric, 2 oz. Cu, or equivalent, still air.
11. 900 mm2, PCB is DENKA K1, 1.5 mm Al, 2kV Thermally conductive dielectric, 2 oz. Cu, or equivalent, still air.
TA : 75500 : 70.224 mA/°C \ \ / 7 Vak @ 7.5 v TA : 25°C \ 500 mm2/2 oz ‘ DENKA K1, 900 mm2J2 oz 1 ‘ 2 \ 500 mm ” °z FRA, woo mm2/3 oz \\ 300 mm2/2 oz \ \ § 7\\ \ 7 300 mm2/1 oz \ FRA, 700 mmZ/z oz \ \ woo mm2J2 oz \\: mo mmZ/I oz \ \
NSIC2050JBT3G
http://onsemi.com
4
TYPICAL PERFORMANCE CURVES
(Minimum FR−4 @ 100 mm2, 1 oz. Copper Trace, Still Air)
−0.130 mA/°C
Figure 2. Steady State Current (Ireg(SS)) vs.
Anode−Cathode Voltage (Vak) Figure 3. Pulse Current (Ireg(P)) vs.
Anode−Cathode Voltage (Vak)
Figure 4. Steady State Current vs. Pulse
Current Testing
Vak, ANODE−CATHODE VOLTAGE (V)
Ireg(P), PULSE CURRENT (mA)
Figure 5. Current Regulation vs. Time
TIME (s)
60504020100
54
56
58
Ireg, CURRENT REGULATION (mA)
30 80
49
52
Figure 6. Power Dissipation vs. Ambient
Temperature @ TJ = 1755C: Small Footprint
TA, AMBIENT TEMPERATURE (°C)
PD, POWER DISSIPATION (mW)
53
55
57
51
Vak, ANODE−CATHODE VOLTAGE (V)
96543
10
30
40
50
Ireg(SS), STEADY STATE CURRENT (mA)
710
DC Test Steady State, Still Air
8
20
210
60
70
011 12 13 14 15 10987654
25
35
40
6460
42
44
46
Ireg(P), PULSE CURRENT (mA)
Ireg(SS), STEADY STATE CURRENT (mA)
30
48
50
3
45
50
52
54
48 56
56
58
55
65
21
TA = 25°C
Non−Repetitive Pulse Test
11 12 13 14 15
52 666250 5854
Vak @ 7.5 V
TA = 25°C
Vak @ 7.5 V
TA = 25°C
60
68
50
TA = −55°C
TA = 25°C
TA = 85°C
−0.224 mA/°C
TA = 125°C
8060200−20−40
500
1000
2000
2500
40
500 mm2/2 oz
300 mm2/1 oz
100 mm2/2 oz
1500
3000
0
100 mm2/1 oz
500 mm2/1 oz
300 mm2/2 oz
120100
TJ(max), maximum die temperature
limit 175°C (100 mm2, 1 oz Cu)
−0.130 mA/°C
70
FR−4 Board
Figure 7. Power Dissipation vs. Ambient
Temperature @ TJ = 1755C: Large Footprint
TA, AMBIENT TEMPERATURE (°C)
8060200−20−40
500
1000
2000
2500
POWER DISSIPATION (mW)
40
DENKA K1, 900 mm2/2 oz
FR−4, 700 mm2/2 oz
1500
3000
0
FR−4, 1000 mm2/3 oz
3500
4000
4500
120100
DENKA K1, 400 mm2/2 oz
FR−4, 700 mm2/1 oz
"w 22mm: Full wave Ema: LED‘s xx xx xx xx xx xx +15 to 20 V LED String 414 '4 35V 3.5V 3.5V CCR (0% H—H—HH—H +12 lo 20 v C) CCR 3,1v \\ LED 8! ' “v nng \} 3.1V __\}
NSIC2050JBT3G
http://onsemi.com
5
APPLICATIONS INFORMATION
The CCR is a self biased transistor designed to regulate the
current through itself and any devices in series with it. The
device has a slight negative temperature coefficient, as
shown in Figure 2 – Tri Temp. (i.e. if the temperature
increases the current will decrease). This negative
temperature coefficient will protect the LEDS by reducing
the current as temperature rises.
The CCR turns on immediately and is typically at 20% of
regulation with only 0.5 V across it.
The device is capable of handling voltage for short
durations of up to 120 V so long as the die temperature does
not exceed 175°C. The determination will depend on the
thermal pad it is mounted on, the ambient temperature, the
pulse duration, pulse shape and repetition.
AC Applications
The CCR is a DC device; however, it can be used with full
wave rectified AC as shown in application notes
AND8433/D and AND8492/D and design notes
DN05013/D and DN06065/D. Figure 8 shows the basic
circuit configuration.
Figure 8. Basic AC Application
Single LED String
The CCR can be placed in series with LEDs as a High Side
or a Low Side Driver. The number of the LEDs can vary
from one to an unlimited number. The designer needs to
calculate the maximum voltage across the CCR by taking the
maximum input voltage less the voltage across the LED
string (Figures 9 and 10).
Figure 9.
Figure 10.
«)mzuv 3,5V +10 lo 13 v ”V \> m _ \ \ ngher current \ 3 5V \ w, ' ' 351) mA LED 77%: LED smng \fi‘ smng wnh CCR In parallel PlNM dimming a) uslmm CCR Q) Q) CCR CI:wmwmsun-um mm u n.7k 0 +10 la la v 35V Adjustable current \\ LED String with 35V CCR in Parallel \\ L 30 <0 ,.="" |="" duty="" cycle="Duly" ratio="D" =="" you="" ton="" to“="" +="" to"="" t‘="" l="">
NSIC2050JBT3G
http://onsemi.com
6
Higher Current LED Strings
Two or more fixed current CCRs can be connected in
parallel. The current through them is additive (Figure 11).
Figure 11.
Other Currents
The adjustable CCR can be placed in parallel with any
other CCR to obtain a desired current. The adjustable CCR
provides the ability to adjust the current as LED efficiency
increases to obtain the same light output (Figure 12).
Figure 12.
Dimming using PWM
The dimming of an LED string can be easily achieved by
placing a BJT in series with the CCR (Figure 13).
Figure 13.
The method of pulsing the current through the LEDs is
known as Pulse Width Modulation (PWM) and has become
the preferred method of changing the light level. LEDs being
a silicon device, turn on and off rapidly in response to the
current through them being turned on and off. The switching
time is in the order of 100 nanoseconds, this equates to a
maximum frequency of 10 Mhz, and applications will
typically operate from a 100 Hz to 100 kHz. Below 100 Hz
the human eye will detect a flicker from the light emitted
from the LEDs. Between 500 Hz and 20 kHz the circuit may
generate audible sound. Dimming is achieved by turning the
LEDs on and off for a portion of a single cycle. This on/off
cycle is called the Duty cycle (D) and is expressed by the
amount of time the LEDs are on (Ton) divided by the total
time of an on/off cycle (Ts) (Figure 14).
Figure 14.
NSIC2050JBT3G
http://onsemi.com
7
The current through the LEDs is constant during the period
they are turned on resulting in the light being consistent with
no shift in chromaticity (color). The brightness is in proportion
to the percentage of time that the LEDs are turned on.
Figure 15 is a typical response of Luminance vs Duty Cycle.
Figure 15. Luminous Emmitance vs. Duty Cycle
DUTY CYCLE (%)
100908070605040
0
1000
3000
ILLUMINANCE (lx)
2000
30
4000
6000
20100
5000
Lux
Linear
Reducing EMI
Designers creating circuits switching medium to high
currents need to be concerned about Electromagnetic
Interference (EMI). The LEDs and the CCR switch
extremely fast, less than 100 nanoseconds. To help eliminate
EMI, a capacitor can be added to the circuit across R2.
(Figure 13) This will cause the slope on the rising and falling
edge on the current through the circuit to be extended. The
slope of the CCR on/off current can be controlled by the
values of R1 and C1.
The selected delay / slope will impact the frequency that
is selected to operate the dimming circuit. The longer the
delay, the lower the frequency will be. The delay time should
not be less than a 10:1 ratio of the minimum on time. The
frequency is also impacted by the resolution and dimming
steps that are required. With a delay of 1.5 microseconds on
the rise and the fall edges, the minimum on time would be
30 microseconds. If the design called for a resolution of 100
dimming steps, then a total duty cycle time (Ts) of 3
milliseconds or a frequency of 333 Hz will be required.
Thermal Considerations
As power in the CCR increases, it might become
necessary to provide some thermal relief. The maximum
power dissipation supported by the device is dependent
upon board design and layout. Mounting pad configuration
on the PCB, the board material, and the ambient temperature
affect the rate of junction temperature rise for the part. When
the device has good thermal conductivity through the PCB,
the junction temperature will be relatively low with high
power applications. The maximum dissipation the device
can handle is given by:
PD(MAX) +TJ(MAX) *TA
RqJA
Referring to the thermal table on page 2 the appropriate
RqJA for the circuit board can be selected.
NSIC2050JBT3G
http://onsemi.com
8
PACKAGE DIMENSIONS
SMB
CASE 403A−03
ISSUE H
E
bD
c
L1
L
A
A1
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. D DIMENSION SHALL BE MEASURED WITHIN DIMENSION P.
2.261
0.089
2.743
0.108
2.159
0.085 ǒmm
inchesǓ
SCALE 8:1
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
SOLDERING FOOTPRINT*
DIM
AMIN NOM MAX MIN
MILLIMETERS
1.90 2.20 2.28 0.075
INCHES
A1 0.05 0.10 0.19 0.002
b1.96 2.03 2.20 0.077
c0.15 0.23 0.31 0.006
D3.30 3.56 3.95 0.130
E4.06 4.32 4.60 0.160
L0.76 1.02 1.60 0.030
0.087 0.090
0.004 0.007
0.080 0.087
0.009 0.012
0.140 0.156
0.170 0.181
0.040 0.063
NOM MAX
5.21 5.44 5.60 0.205 0.214 0.220
HE
0.51 REF 0.020 REF
D
L1
HE
POLARITY INDICATOR
OPTIONAL AS NEEDED
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
P
UBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
NSIC2050JB/D
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loc
al
Sales Representative

Products related to this Datasheet

IC LED DRIVER 50MA 120V 15% SMB2
IC REG CCR 120V 50MA SMB
IC REG CCR 120V 50MA SMB
IC LED DRIVER 50MA 120V 15% SMB2
IC LED DRIVER 50MA 120V 15% SMB2
IC REG CCR 120V 50MA SMB