SPV1050 Datasheet by STMicroelectronics

View All Related Products | Download PDF Datasheet
mam
This is information on a product in full production.
May 2018 DocID025569 Rev 5 1/36
SPV1050
Ultralow power energy harvester and battery charger
Datasheet - production data
Features
Transformerless thermoelectric generators
and PV modules energy harvester
High efficiency for any harvesting source
Up to 70 mA maximum battery charging current
Fully integrated buck-boost DC-DC converter
Programmable MPPT by external resistors
2.6 V to 5.3 V trimmable battery charge voltage
level (± 1% accuracy)
2.2 V to 3.6 V trimmable battery discharge
voltage level (± 1% accuracy)
Two fully independent LDOs (1.8 V and 3.3 V
output)
Enable/disable LDO control pins
Battery disconnect function for battery
protection
Battery connected and ongoing charge logic
open drain indication pins
Applications
Charge any battery type, including lithium
based, solid state thin film and super-capacitor.
WSN, HVAC, building and home automation,
industrial control, remote metering, lighting,
security, surveillance.
Wearable and biomedical sensors, fitness.
Description
The SPV1050 is an ultralow power and high-
efficiency energy harvester and battery charger,
which implements the MPPT function and
integrates the switching elements of a buck-boost
converter.
The SPV1050 device allows the charge of any
battery, including the thin film batteries, by tightly
monitoring the end-of-charge and the minimum
battery voltage in order to avoid the
overdischarge and to preserve the battery life.
The power manager is suitable for both PV cells
and TEG harvesting sources, as it covers the
input voltage range from 75 mV up to 18 V and
guarantees high efficiency in both buck-boost and
boost configuration.
Furthermore the SPV1050 device shows very
high flexibility thanks also to the trimming
capability of the end-of-charge and undervoltage
protection voltages. In such way any source and
battery is matched.
The MPPT is programmable by a resistor input
divider and allows maximizing the source power
under any temperature and irradiance condition.
An unregulated voltage output is available (e.g. to
supply a microcontroller), while two fully
independent LDOs are embedded for powering
sensors and RF transceivers. Both LDOs (1.8 V
and 3.3 V) can be independently enabled through
two dedicated pins.
VFQFPN 3 x 3 x 1 mm 20L Die form
www.st.com
Contents SPV1050
2/36 DocID025569 Rev 5
Contents
1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.1 Battery charger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 Boost configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.3 Buck-boost configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.4 MPPT setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.5 Power manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.1 VFQFPN20 3 x 3 x 1 mm - 20-lead pitch 0.4 package information . . . . . 28
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Appendix A Application tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
DocID025569 Rev 5 3/36
SPV1050 List of tables
36
List of tables
Table 1. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 2. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 5. VFQFPN20 3 x 3 x 1 mm - 20-lead pitch 0.4 package mechanical data . . . . . . . . . . . . . . 29
Table 6. Die pad coordinates and pad size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 7. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 8. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
List of figures SPV1050
4/36 DocID025569 Rev 5
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Pin configuration (top through view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. Battery management section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 4. Boost configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 5. Boost startup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 6. MPPT tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 7. Triggering of VEOC (BATT pin floating) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 8. Efficiency vs. input current - VOC = 1.0 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 9. Efficiency vs. input current - VOC = 1.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 10. Efficiency vs. input current - VOC = 2.0 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 11. Efficiency vs. input current - VOC = 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 12. Buck-boost configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 13. Buck-boost startup (IIN = 5 µA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 14. MPPT tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 15. Efficiency vs. input current - VOC = 6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 16. Efficiency vs. input current - VOC = 9 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 17. Efficiency vs. input current - VOC = 12 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 18. Efficiency vs. input current - VOC = 15 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 19. MPPT setup circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 20. Energy harvester equivalent circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 21. Voltage vs. time at different C values and fixed current . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 22. LDO1 turn on with 100 mA load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 23. LDO2 turn on with 100 mA load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 24. VFQFPN20 3 x 3 x 1 mm - 20-lead pitch 0.4 package outline . . . . . . . . . . . . . . . . . . . . . . 28
Figure 25. Die form pad position (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 26. Tape and reel design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 27. Inductor current and input voltage waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
STORE E3 RH H H fi—Erimj—‘mw? \‘ ‘\‘ 1 \\‘m\\\m1m\‘
DocID025569 Rev 5 5/36
SPV1050 Block diagram
36
1 Block diagram
Figure 1. Block diagram
3*1'
,1B/9
/'2B(1
BBBBBBBBBB
%$77B&211
BBBBBBBBBB
%$77B&+*
%$77
6725(
,1B+9
/B+9
033
/'2B(1
0337
&21752/
/2*,&
(2&
893
&21)
033B5()
033B6(7
/'2
&21752/
'5,9(56
*1'
9
6725(
9
6725(
/'2
9
$0
UUUUU CCCCC 3:333 flflflflfl
Pin configuration SPV1050
6/36 DocID025569 Rev 5
2 Pin configuration
Figure 2. Pin configuration (top through view)
VFQFPN 3 x 3 x 1 mm - 20L
6725(
%$77
/'2
&21)
/'2
033
033B6(7
*1'
/'2B(1
033B5()
/'2B(1
%$77B&211
893
%$77B&+*
(2&
,1B+9
/B+9
3*1'
,1B/9
1&
$0
VFQFPN 3 x 3 x 1 mm - 20L
DocID025569 Rev 5 7/36
SPV1050 Pin description
36
3 Pin description
Table 1. Pin description
Pin no. Name Type Description
1MPPI
Max. power point tracking voltage sense pin.
To be connected to the voltage source through a ladder resistor.
2 MPP-SET I
Max. power point setting voltage pin.
To be connected to the MPP pin through a ladder resistor. Connect to STORE if
MPP function is not required.
3 MPP-REF I
Max. power point reference voltage pin.
To be connected to a 10 nF capacitor.
Connect to an external voltage reference if MPP function is not required.
4 GND GND Signal ground pin.
5 LDO1_EN I If high, enables LDO1.
6 LDO2_EN I If high, enables LDO2.
7 BATT_CHG
O
Ongoing battery charge output flag pin (open drain).
If low, it indicates that the battery is on charge.
If high, it indicates that the battery is not on charge.
8BATT_CONN
O
Battery status output flag pin (open drain).
If high, it indicates that the pass transistor between the STORE and BATT pins is
open (battery disconnected).
If low, it indicates that the pass transistor between the STORE and BATT pins is
closed (battery connected).
9EOCI
Battery end-of-charge pin.
To be connected to the STORE pin through a resistor divider between EOC and
GND.
10 UVP I Battery undervoltage protection pin.
To be connected to the STORE pin through a resistor.
11 LDO1 O 1.8 V regulated output voltage pin.
12 LDO2 O 3.3 V regulated output voltage pin.
13 CONF I
Configuration pin.
Boost configuration: to be connected to the voltage supply source.
Buck-boost configuration: to be connected to ground.
14 BATT I/O Battery connection pin.
15 STORE I/O Tank capacitor connection pin.
16 IN_LV I Low voltage input source.
It has to be connected to the inductor for both boost and buck-boost configuration.
17 NC - Not connected.
18 PGND PGND Power ground pin.
Pin description SPV1050
8/36 DocID025569 Rev 5
19 L_HV I
Input pin for buck-boost configuration.
Boost configuration: to be connected to ground.
Buck-boost configuration: to be connected to the inductor.
20 IN_HV I
High voltage input source.
Boost configuration: to be connected to ground.
Buck-boost configuration: to be connected to the voltage supply source.
Table 1. Pin description (continued)
Pin no. Name Type Description
DocID025569 Rev 5 9/36
SPV1050 Maximum ratings
36
4 Maximum ratings
Table 2. Thermal data
Symbol Parameter
Value
Unit
Min. Max.
Rth j-c Max. thermal resistance, junction to case - 7.5 °C/W
Rth j-a(1)
1. Measured on 2-layer application board FR4, Cu thickness = 17 um with total exposed pad area = 16 mm2
Max. thermal resistance, junction to ambient - 49 °C/W
PTOT Maximum power dissipation at Tamb = 85 °C - 1 W
TjJunction temperature range -40 ÷ 125 °C
Tstorage Storage temperature 150 °C
Table 3. Absolute maximum ratings
Symbol Parameter Value Unit
IN_LV Analog input VSTORE + 0.3 V
IN_HV Analog input 20 V
L_HV Analog input IN_HV + 0.3 V
CONF Analog input 5.5 V
MPP Analog input 5.5 V
MPP-SET Analog input 5.5 V
MPP-REF Analog input 5.5 V
BATT Analog input/output 5.5 V
STORE Analog input/output 5.5 V
UVP Analog input VSTORE + 0.3 V
EOC Analog input VSTORE + 0.3 V
BATT_CONN Digital output 5.5 V
BATT_CHG Digital output 5.5 V
LDO1_EN Digital input VSTORE + 0.3 V
LDO2_EN Digital input VSTORE + 0.3 V
LDO1 Analog output VSTORE + 0.3 V
LDO2 Analog output VSTORE + 0.3 V
PGND Power ground 0 V
GND Signal ground -0.3 to 0.3 V
Electrical characteristics SPV1050
10/36 DocID025569 Rev 5
5 Electrical characteristics
VSTORE = 4 V, Tamb = - 40 to 85 °C, unless otherwise specified. Voltage with respect to GND
unless otherwise specified.
Table 4. Electrical characteristics
Symbol Parameter Test condition Min. Typ. Max. Unit
Battery operating range
IBATT
Maximum battery charging
current ---70mA
VBATT BATT pin voltage range - 2.2 - 5.3 V
VBATTACC Battery voltage accuracy - -1 - +1 %
RBATT Pass transistor resistance - 6 7 8
Bandgap
VBG
Internal reference voltage - - 1.23 - V
Accuracy - -1 - +1 %
UVP
VUVP
Undervoltage protection
range (VUVP + UVPHYS) < (VEOC - EOCHYS) 2.2 - 3.6 V
EOC
VEOC
Battery end-of-charge
voltage (VUVP + UVPHYS) < (VEOC -EOCHYS) 2.6 - 5.3 V
EOCHYS EOC hysteresis VSTORE decreasing - -1 - %
STORE
VSTORE
STORE pin voltage operating
range -V
UVP -V
EOC V
Static current consumption
ISD Shutdown current
Shut down mode:
Before first startup or BATT_CONN
high
TAMB < 60 °C
--1nA
ISB Standby current
Standby mode:
BATT_CONN low, BATT_CHG high,
VSTORE = 5.3 V and LDO1,2_EN low
TAMB = 25 °C
-0.8-µA
IOP
Operating current in open
load
Operating mode
(LDOs in open load)
BATT_CONN low
BATT_CHG high
TAMB = 25 °C
LDO1_EN = 1
or
LDO2_EN = 1
-1.7-
µA
LDO1,2_EN = 1 - 2.6 -
DocID025569 Rev 5 11/36
SPV1050 Electrical characteristics
36
DC-DC converter
VIN_LV Input voltage range
Boost configuration 0.15 - VEOC V
VIN_HV Buck-boost configuration 0.15 - 18
VIN-MIN
Minimum input voltage at
startup
Boost configuration BATT_CONN
high or at first startup - 0.55 0.58
V
Buck-boost configuration
BATT_CONN high or at first startup -2.62.8
IB-SU Startup input current
Boost configuration - 30 - µA
IBB-SU Buck-boost configuration - 5 - µA
R-ONBLow-side MOS resistance
Boost configuration
0.5 1.0 1.5
SR-ONB
Synchronous rectifier MOS
resistance 0.5 1.0 1.5
R-ONBB Low-side MOS resistance
Buck-boost configuration
11.52
SR-ONBB
Synchronous rectifier MOS
resistance 11.52
fSW
Maximum allowed switching
frequency Boost and buck-boost configurations - - 1 MHz
UVLOH
Undervoltage lockout
threshold (VSTORE
increasing)
Boost and buck-boost configurations
-2.62.8V
UVLOL
Undervoltage lockout
threshold (VSTORE
decreasing)
22.1- V
MPPT
TTRACKING MPPT tracking period BATT_CHG low 12 - 20 s
TSAMPLE MPPT sampling time BATT_CHG high 0.3 - 0.5 s
VMPP MPP pin voltage range Boost and buck-boost configurations 0.075 - VUVP V
MPPACC MPP tracking accuracy Boost and buck-boost configurations 95 - %
LDO
VLDO1,2
LDO1,2 adjusted output
voltage
LDO1_EN = 1 - 1.8 -
V
LDO2_EN = 1 - 3.3 -
VLDO1,2
LDO1 dropout VUVP + 200 mV < VBATT 5.3 V
ILDO1 = 100 mA --0.5
%
LDO2 dropout 3.3 < VUVP + 200 mV < VBATT 5.3 V
ILDO2 = 100 mA --0.5
tLDO LDO1,2 startup time BATT_DIS low
CLDO1,2 = 100 nF --1ms
ILDO1(1) IOUT max from LDO1 - - - 200 mA
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Electrical characteristics SPV1050
12/36 DocID025569 Rev 5
ILDO2(1)IOUT max from LDO2 - - - 200 mA
VLDO1,2_EN_H LDO1,2 enable input HIGH - 1 - - V
VLDO1,2_EN_L LDO1,2 enable input LOW - - - 0.5 V
Digital output
VBATT_CONN_L VBATT_DIS LOW 1 mA sink current 40 70 150 mV
VBATT_CHG_L VXBATT_CHG LOW 1 mA sink current 40 70 150 mV
1. Guaranteed by design, not tested in production.
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
DocID025569 Rev 5 13/36
SPV1050 Functional description
36
6 Functional description
The SPV1050 is an ultralow power energy harvester with an embedded MPPT algorithm,
a battery charger and power manager designed for applications up to about 400 mW.
The SPV1050 device integrates a DC-DC converter stage that can be configured as boost
or buck-boost by tying the CONF pin to PV+/TEG+ or to ground respectively as shown in
Figure 4 and Figure 12 on page 20.
If the embedded MPPT algorithm is enabled, the device regulates the working point of the
DC-DC converter in order to maximize the power extracted from the source by tracking its
output voltage. See further details in Section 6.2: Boost configuration on page 16 and
Section 6.3: Buck-boost configuration on page 20.
The MPPT algorithm can be disabled by shorting the MPP-SET pin to the STORE pin, and
by providing an external voltage to the MPP-REF pin.
In case of low impedance source (e.g. USB), the MPP-REF must be connected to GND.
The IC will switch at the highest duty cycle possible until the VEOC on the STORE pin is
triggered.
In case of high impedance source with limited current capability (i.e. if the source is unable
to sustain switching at the maximum duty cycle), the MPP-REF pin must be connected to a
voltage reference selected such that VMPP-REF > VIN(MIN). This voltage reference can be set
through a resistor ladder connected to STORE or any other voltage reference available in
the application.
If the MPP pin is connected to the source by a resistor ladder, then the same consideration
must be extended to the MPP pin. Referring to Figure 19 (where connections between
MPP-SET to R2-R3 must be open and MPP-SET must be considered as connected to
STORE):
–If R1 = 0 : then VMPP-REF = VIN(MIN)
Otherwise: VMPP-REF = VMPP(MIN) = VIN(MIN) * (R2+R3)/R1
6.1 Battery charger
In order to guarantee the lifetime and safety of the battery, the SPV1050 device controls an
integrated pass transistor between the STORE and BATT pins and implements both the
undervoltage (UVP) and the end-of-charge (EOC) protection thresholds.
Functional description SPV1050
14/36 DocID025569 Rev 5
Figure 3. Battery management section
Before the first startup the pass transistor is open, so that the leakage from the battery is
lower than 1 nA. The pass transistor will be closed once the voltage on the STORE pin will
rise such that the EOC threshold VEOC is triggered. If the battery is full, and until
VSTORE > VEOC - EOCHYS, the DC-DC converter will stop switching to avoid battery
overcharge.
On the contrary, in order to avoid the overdischarge of the battery, the pass transistor will be
opened once the voltage on the STORE pin will decrease down to UVP threshold VUVP
.
These functions are simply implemented by the control of two voltage thresholds, VUVP and
VEOC, which can be regulated by a resistor partitioning (R4, R5, R6) between STORE, UVP
and EOC pins.
The scaled voltages on the UVP and EOC pins will be compared with the internal bandgap
voltage reference VBG set at 1.23 V.
The design rules to setup the R4, R5 and R6 are the following:
Equation 1
VBG = VUVP • (R5 + R6) / (R4 + R5 + R6)
Equation 2
VBG = VEOC • R6 / (R4 + R5 + R6)
In order to minimize the leakage due to the output resistor partitioning it has to be typically:
%DWWHU\
&6725(
BBBBBBBBBB
%$77B&21
BBBBBBBBBB
%$77B&+*
%$77
6725(
&21752/
/2*,&
(2&
893
*1'
5
5
5
 9
3$66
75$16,6725
$0
DocID025569 Rev 5 15/36
SPV1050 Functional description
36
Equation 3
10 M R4 + R5 + R6 20 M
Further, the SPV1050 device provides two open drain digital outputs to an external
microcontroller:
BATT_CONN
This pin is pulled down when the pass transistor is closed. It will be released once the
pass transistor will be opened (e.g. triggering of VUVP). If used, this pin must be pulled-
up to the STORE by a 10 M (typical) resistor.
BATT_CHG
This pin is pulled down when the DC-DC converter is switching, while it's released
when it is not switching, i.e. when the EOC threshold is triggered until the voltage on
the STORE pin drops at VEOC - EOCHYS , when the UVLO threshold is triggered or
during the TSAMPLE of the MPPT algorithm. If used, this pin must be pulled-up to the
STORE by a 10 M (typical) resistor.
Functional description SPV1050
16/36 DocID025569 Rev 5
6.2 Boost configuration
Figure 4 shows the boost application circuit.
Figure 4. Boost configuration
In case of boost configuration, once the harvested source is connected, the SPV1050
device will start boosting the voltage on the STORE pin. In the range of 0 VSTORE < 2.6 V
the voltage boost is carried on by an integrated high-efficiency charge pump, while the
DC-DC converter stage will remain OFF.
%DWWHU\
&LQ
&6725(
72/2$'
72/2$'
3*1'
,1B/9
/'2B(1 BBBBBBBBBB
%$77B&21
BBBBBBBBBB
%$77B&+*
%$77
6725(
,1B+9
/B+9
033
/'2B(1
0337
&21752/
/2*,&
(2&
893
&21)
033B5()
033B6(7
/'2
&21752/
'5,9(56
*1'
9
6725(
9
6725(
/'2
$0
7KHUPRHOHFWULF
JHQHUDWRU
RN ON 90D? Swnchmg !—~—> . 211mm 1 51 35 PM
DocID025569 Rev 5 17/36
SPV1050 Functional description
36
Figure 5 shows the behavior of input voltage VIN and VSTORE at the startup.
Figure 5. Boost startup
In the range 2.6 V VSTORE < VEOC the voltage is boosted by the DC-DC converter. In this
voltage range the SPV1050 device sets its internal impedance according to the integrated
MPPT algorithm (the MPPT mode is active). The SPV1050 device will stop switching for
400 ms (TSAMPLE) every 16 seconds (TTRACKING). During the TSAMPLE, the input open
circuit voltage VOC is sampled by charging the capacitor on the MPP-REF pin. Once the
TSAMPLE is elapsed, the DC-DC converter will start switching back by setting its own
impedance such that VIN stays as close as possible to VMPP of the source. A resistor
partitioning connected between the source and the pins MPP and MPP-SET has to be
properly selected, in order to match the manufacturer's specs. Please refer to Section 6.4:
MPPT setting on page 24 for further details.
The periodic sampling of VOC guarantees the best MPPT in case of source condition
variations (e.g. irradiation/thermal gradient and/or temperature changes).
‘ (VEOCL EOCHVS DC-DC switching in! W mum] a mm W £17
Functional description SPV1050
18/36 DocID025569 Rev 5
Figure 6 shows the input voltage waveform of a PV panel supplying VOC = 1.25 V and
VMPP = 1.05 V.
Figure 6. MPPT tracking
Once the VEOC threshold is triggered, the switching of the DC-DC converter is stopped until
VSTORE will decrease to VEOC - EOCHYS.
Figure 7. Triggering of VEOC (BATT pin floating)
Flgure 8. Efflclency vs. Input current - Flgure 9. Efflclency vs. Input current - Flgure 10. Efflclency vs. Input current - Flgure11. Efflclency vs. Input current -
DocID025569 Rev 5 19/36
SPV1050 Functional description
36
The following plots from Figure 8 to Figure 11 show the power efficiency of the DC-DC
converter configured in boost mode at Tamb = 25 °C in some typical use cases at different
open circuit voltages:
Figure 8. Efficiency vs. input current -
VOC =1.0V
Figure 9. Efficiency vs. input current -
VOC =1.5V











   
(IILFLHQF\
3RXW3LQ>@
,QSXWFXUUHQW>P$@
9EDWW 9
9EDWW 9
9EDWW 9
$0







   
(IILFLHQF\
3RXW3LQ>@
,QSXWFXUUHQW>P$@
9EDWW  9
9EDWW  9
9EDWW  9
$0
Figure 10. Efficiency vs. input current -
VOC =2.0V
Figure 11. Efficiency vs. input current -
VOC =2.5V








    
(IILFLHQF\
3RXW3LQ>@
,QSXWFXUUHQW>P$@
9EDWW 9
9EDWW 9
9EDWW  9
$0
Functional description SPV1050
20/36 DocID025569 Rev 5
6.3 Buck-boost configuration
Figure 12 shows the buck-boost application circuit.
Figure 12. Buck-boost configuration
%DWWHU\
&LQ
&6725(
72/2$'
72/2$'
3*1'
,1B/9
/'2B(1 BBBBBBBBBB
%$77B&21
BBBBBBBBBB
%$77B&+*
%$77
6725(
,1B+9
/B+9
033
/'2B(1
0337
&21752/
/2*,&
(2&
893
&21)
033B5()
033B6(7
/'2
&21752/
'5,9(56
*1'
9
6725(
9
6725(
/'2
$0
6RODU
FHOO
TRVGGERED EOC DQDC STARTS TURN ON
DocID025569 Rev 5 21/36
SPV1050 Functional description
36
In case of buck-boost configuration, once the harvested source is connected, the IN_HV
and STORE pins will be internally shorted until VSTORE < 2.6 V. Figure 13 shows the
behavior of the input voltage VIN_HV and VSTORE at the startup.
Figure 13. Buck-boost startup (IIN = 5 µA)
In the range 2.6 V VSTORE < VEOC the integrated DC-DC converter will start switching. In
this operating range the SPV1050 input impedance is set by the embedded MPPT algorithm
(the MPPT mode is active). The SPV1050 device will stop switching for 400ms (TSAMPLE)
every 16 seconds (TTRACKING). During the TSAMPLE, the input open circuit voltage VOC is
sampled by charging the capacitor on the MPP-REF pin. Once the TSAMPLE is elapsed, the
DC-DC converter will start switching back by setting its own impedance such that VIN stays
as close as possible to VMPP of the source. A resistor partitioning connected between the
source and the pins MPP and MPP-SET has to be properly selected in order to match the
VMPP given by the source manufacturer. Please refer to Section 6.4: MPPT setting for
further details.
The periodic sampling of VOC guarantees the best MPPT in case of source condition
variations (e.g. irradiation and/or temperature changes).
H w: RACK‘NG munnmmsm
Functional description SPV1050
22/36 DocID025569 Rev 5
Figure 14 shows the MPPT tracking form in case of VOC = 9.9 V and VMPP = 8.2 V.
Figure 14. MPPT tracking
Flgure 15. Efflclency vs. Input current - Flgure 16. Efflclency vs. Input current - Flgure 17. Efflclency vs. Input current - Flgure 18. Efflclency vs. Input current -
DocID025569 Rev 5 23/36
SPV1050 Functional description
36
The following plots from Figure 15 to Figure 18 show the power efficiency of the DC-DC
converter configured in buck-boost mode at Tamb = 25 °C in some typical use cases:
Figure 15. Efficiency vs. input current -
VOC =6V
Figure 16. Efficiency vs. input current -
VOC =9V






    
(IILFLHQF\
3RXW3LQ>@
,QSXWFXUUHQW>P$@
9EDWW  9
9EDWW  9
9EDWW  9
$0






    
(IILFLHQF\
3RXW3LQ>@
,QSXWFXUUHQW >P$@
9EDWW  9
9EDWW  9
9EDWW  9
$0
Figure 17. Efficiency vs. input current -
VOC =12V
Figure 18. Efficiency vs. input current -
VOC =15V






   
(IILFLHQF\
3RXW3LQ>@
,QSXWFXUUHQW >P$@
9EDWW  9
9EDWW  9
9EDWW  9
$0






   
(IILFLHQF\
3RXW3LQ>@
,QSXWFXUUHQW>P$@
9EDWW  9
9EDWW  9
9EDWW  9
$0
Functional description SPV1050
24/36 DocID025569 Rev 5
6.4 MPPT setting
When the MPPT feature is enabled, the SPV1050 device sets its working point such that VIN
= VMPP
. In fact, VMPP is a fraction of the open circuit voltage VOC of the harvesting source.
Figure 19. MPPT setup circuitry
The maximum power point is set through the input resistor partitioning R1, R2 and R3.
First of all, set the total input resistance (R1 + R2 + R3) considering the maximum
acceptable leakage current (ILEAKAGE):
Equation 4
ILEAKAGE = VOC / (R1 + R2 + R3)
Typically, assuming 10 M R1 + R2 + R3 20 M, the leakage on the input resistor
partitioning can be considered as negligible.
Then set the R2 + R3 selecting the minimum between the results of equations 5 and 6 which
consider that the voltage on the MPP pin must be lower than the minimum VUVP (VUVP(min)
= 2.2 V) and the energy balance on the inductor even at very low input power (see details in
Appendix A, Application tips), respectively:
Equation 5
R2 + R3 (R1 + R2 + R3) * VUVP(min) / VOC
Equation 6
R2 + R3 51 * (R1 + R2 + R3) * VMPP(min) / VEOC
&LQ
3*1'
033
0337
033B5()
033B6(7
*1'
5
5
5
+DUYHVWH G
VRXUFH
&5()
$0
DocID025569 Rev 5 25/36
SPV1050 Functional description
36
Finally, set the R3 considering the MPPRATIO (in case of PV panels MPPRATIO = VMP / VOC):
Equation 7
MPPRATIO = R3 / (R2 + R3)
In boost mode if the electrical characteristics of the selected source and battery are such
that VOC-MAX VUVP(min), then the resistor R1 can be replaced by a short-circuit.
Consequently, only R2 and R3 have to be selected for a proper setting of MPPRATIO.
In a PV panel the VMPP is typically within 70% ÷ 80% of VOC.
In a TEG the VMPP is typically about 50% of VOC.
The MPPT accuracy can be strongly affected by an improper selection of the input
capacitor. The input capacitance CIN = 4.7 F generally covers the most typical use cases.
The energy extracted from the harvested source, and stored in the input capacitance, is
transferred to the load by the DC-DC converter through the inductor. The energy extracted
by the inductor depends by the sink current: the higher input currents cause higher voltage
drop on the input capacitance and this may result a problem for low voltage (< 1 V) and high
energy (> 20 mA) sources. In such application cases the input capacitance has to be
increased or, alternatively the L1 inductance has to be reduced.
During the TSAMPLE time frame the input capacitor CIN is charged up to VOC by the source
with a T1 time constant resulting from the capacitance and the equivalent resistance REQ of
the source.
In case of the PV source, assuming IMPP the minimum current at which the MPP must be
guaranteed, the REQ can be calculated as following:
Equation 8
REQ = (VOC - VMPP) / IMPP = VOC • (1 - MPPRATIO) / IMPP
Thus CIN is calculated by the following formula:
Equation 9
CIN T1 /REQ
The following plots in Figure 20 and Figure 21 show the effect of different CIN values on the
time constant. If the capacitance is too high, the capacitor may not be charged within the
TSAMPLE = 400 ms time window, thus affecting the MPPT accuracy.
Figure 20. Energy harvester equivalent circuit —i Figure 21. Voltage vs. time at different C values _q = A m —(i = 1m —ci= 22“; a 1m 2w ace Ann me [ms]
Functional description SPV1050
26/36 DocID025569 Rev 5
6.5 Power manager
The SPV1050 device works as a power manager also by providing one unregulated output
voltage on the STORE pin and two regulated voltages on the LDO1 (1.8 V) and LDO2
(3.3 V) pins.
Each LDO can be selectively enabled or disabled by driving the related enable/disable pins
LDO1_EN and LDO2_EN.
The performances of the LDOs can be optimized by selecting a proper capacitor between
the LDO output pin and ground. A 100 nF for each LDO pin is suitable for the most typical
use cases. Figure 22 and Figure 23 show the behavior of the LDOs when a 100 mA load is
connected.
Figure 20. Energy harvester equivalent circuit Figure 21. Voltage vs. time at different C values
and fixed current
&
9
&
5
(4
9
(4
,
033
$09
mum 711mm) P2 mm P! mzaNCV) Nnennmcfi Psmnvlm) PE dummy mu: < 93v="">< wv="">< 757v="" hams="" x="" r="" 4="" a="" mum="" "mums;="" mm.="" menamewava="" mm="" m="" :uawaum="" mam="" vldoz="" "k="" ildoz="0" "1a="" ‘n="" .="" m="" mum="" p2="" mm)="" p2="" mwamm)="" manama“="" psmmm)="" pa="" fluwmly="" 3="" 13="" v="" 1="" so="" v="" 1="" m="" v="" i="" i="" 1="" mum="" «="" mm="">
DocID025569 Rev 5 27/36
SPV1050 Functional description
36
Figure 22. LDO1 turn on with 100 mA load
Figure 23. LDO2 turn on with 100 mA load
SPECI‘NNEG E 9 < el="" 743434343442;="" 2="" :j="" d="" pm="" #1="" \d="" [)1="" r:d.20="" 4.="" e="" .7="" 15="" fl="" 0="" 15="" wu="" e="" :3="" 8="" j="" m="" d="" +="" q="" m="" d="" d="" c="" h="" 5="" h="" w="" h="" 4="" w="" ‘="" ‘="" b="" 6="" l="" f="" d2="">
Package information SPV1050
28/36 DocID025569 Rev 5
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
7.1 VFQFPN20 3 x 3 x 1 mm - 20-lead pitch 0.4 package
information
Figure 24. VFQFPN20 3 x 3 x 1 mm - 20-lead pitch 0.4 package outline
1. The pin #1 identifier must exist on the top surface of the package by using an indentation mark or an other
feature of the package body. Exact shape and size of this feature is optional.
9)4)31/
BOTTOM VIEW
DocID025569 Rev 5 29/36
SPV1050 Package information
36
Table 5. VFQFPN20 3 x 3 x 1 mm - 20-lead pitch 0.4 package mechanical data
Symbol
Dimensions (mm)
Note
Min. Typ. Max.
A 0.80 0.90 1.00
(1)
1. “VFQFPN” stands for “Thermally Enhanced Very thin Fine pitch Quad Packages No lead”.
Very thin: 0.80 < A 1.00 mm / fine pitch: e < 1.00 mm.
A1 - 0.02 0.05
A2 - 0.65 1.00
A3 - 0.20 -
b 0.15 0.20 0.25
D 2.85 3.00 3.15
D1 - 1.60 -
D2 1.50 1.60 1.70
E 2.85 3.00 3.15
E1 - 1.60 -
E2 1.50 1.60 1.70
e 0.35 0.40 0.45
L 0.30 0.40 0.50
ddd - - 0.07
Package information SPV1050
30/36 DocID025569 Rev 5
Figure 25. Die form pad position (top view)
0337
0335()
033
*1'
/'2B(1
,1B+9
/'2B(1
/B+9 68%
%$77B&+*
3*1'
%$77B&211
,1B/9
(2&
36725(
893
6725(
9%$77
&21)
/'2
/'2
$0
DocID025569 Rev 5 31/36
SPV1050 Package information
36
Table 6. Die pad coordinates and pad size
Pad name X position [m] Y position[m] Pad dimension [m]
IN_HV -416.55 594.09
81.05 x 81.05
L_HV -264.75 594.09
SUB -126.87 594.09
PGND 10.99 594.09
IN_LV 142.65 594.09
PSTORE 373.43 594.09
STORE 594.09 455.22
BATT 594.09 303.42
CONF 594.09 -6.9
LDO2 594.09 -152.33
LDO1 594.09 -310.59
UVP 439.39 -594.09
EOC 281.45 -594.09
BATT_OK 135.88 -594.09
BATT_CHG -18.03 -594.09
LDO2_EN -377.15 -594.09
LDO1_EN -594.09 -430.77
GND -594.09 -278.97
MPP_REF -594.09 -135.06
MPP_SET -594.09 148.12
MPP -594.09 299.92
ml seam v4 rm.“ .q (1 runs” m u: .4 v—- Kr. (o (x) (I) (m 53 ® _. IMMc-manumm hmmflm Emanudlum human IMmmmn-lm muwwnm ‘ mum—J.“ “Ida-Imam“: WNW“! muxmlx
Ordering information SPV1050
32/36 DocID025569 Rev 5
Figure 26. Tape and reel design
8 Ordering information
Table 7. Device summary
Order code Op. temp. range (°C) Package Packing
SPV1050TTR -40 to 85 VFQFPN 3 x 3 x 1 20L Tape and reel
SPV1050-WST -40 to 85 Die form Sawn tested wafer
DocID025569 Rev 5 33/36
SPV1050 Application tips
36
Appendix A Application tips
In DC-DC converters the energy is transferred from the input to the output through the
inductor. During the ON phase of the duty cycle, the inductor stores energy while during the
OFF phase of the duty cycle, the energy is released toward the output stage.
Figure 27. Inductor current and input voltage waveforms
The SPV1050 controls the duty cycle of the driving signal by comparing the voltages on the
MPP and MPP-REF pins. When VMPP rises higher than VMPP-REF
, the IC switches ON and
the inductor is loaded for TON until one of the following events occurs:
–V
STORE triggers the EOC threshold
The inductor current (IL) triggers the internal threshold IL(PEAK) (= 140 mA, typ.)
–T
ON(MAX) = 10 µs elapses
The energy stored in the inductor will be released to the output stage during the OFF phase.
During TOFF
, IL decreases to 0 mA (all energy has been released). According to the internal
controls of the IC, TOFF(MIN) = 0.2 µs then, in order to prevent IL becoming negative, the
application must be designed such that the energy stored in the inductor during TON is
always greater or equal to the energy released during TOFF
. This goal can be achieved
through the proper selection of R2 + R3. Thus, in order to guarantee IL(MIN) > 0, it must be:
Equation 10
KE K&&
dKE dK&&
ΕΕ
d
/>;W<Ϳ
/>,
Ε
s/E
/>;D/EͿ
>Kt/EWhdWKtZ
dKE;DyͿ dK&&;D/EͿ
/ŶƚĞƌŶĂů
ƌŝǀŝŶŐ^ŝŐŶĂů
9,196725(
/72))
9,1
/721
ILMIN
IH
VSTORE VIN
L
-------------------------------------------TOFF MIN
0=
Application tips SPV1050
34/36 DocID025569 Rev 5
Equation 11
Which leads to:
Equation 12
Finally, considering the worst case VSTORE = VEOC, the minimum operating voltage VMPP =
VMPP(MIN) and the resistor partitioning between VIN and VMPP:
Equation 13
ILMIN
VIN
L
---------- TON MAX
VSTORE VIN
L
-------------------------------------------TOFF MIN
0=
VIN VSTORE
TOFF MIN
TON MAX
TOFF MIN
+
-------------------------------------------------------------------------
R2R3
+R1R2R3
++
VMPP MIN
VEOC
-----------------------------------
TON TOFF
+
TOFF
------------------------------------=
DocID025569 Rev 5 35/36
SPV1050 Revision history
36
9 Revision history
Table 8. Document revision history
Date Revision Changes
25-Nov-2013 1 Initial release.
28-Aug-2014 2
Document status promoted from preliminary data to production
data, with comprehensive update of electrical characteristics
and graphic content throughout the document.
18-Dec-2014 3 Document status corrected to reflect current phase of product
development.
06-Aug-2015 4
Minor text edits throughout the document.
Added maximum values for Rth j-c and Rth j-a in Table 2:
Thermal data, with associated footnote.
Multiple changes to parameters, test conditions and values in
Table 4: Electrical characteristics.
Modified text in Section 6: Functional description and
Section 6.4: MPPT setting
Removed order code SPV1050T from Table 7: Device
summary, and modified package and packing values for order
code SPV1050-WST.
Added Appendix A: Application tips
17-May-2018 5 Added Figure 26 on page 32.
Minor modifications throughout the document
SPV1050
36/36 DocID025569 Rev 5
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2018 STMicroelectronics – All rights reserved

Products related to this Datasheet

IC BATT CHG MULTI-CHEM 20VFQFPN
IC BATT CHG MULTI-CHEM 20VFQFPN
BOARD ENERGY HARVST BATT SPV1050
BOARD EVAL SPV1050 ULT LP BOOST
BOARD ENERGY HARVEST SPV1050
IC BATT CHG MULTI-CHEM 20VFQFPN
SOLAR POWER MANAGER MICRO (2V 16