C8051F340-349(A,B,C,D) Datasheet by Silicon Labs

View All Related Products | Download PDF Datasheet
SILIEEIN LABS 10bit , 200 ksps ADC TEMP SENSOR
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 3/19 Copyright © 2019 by Silicon Laboratories C8051F34x
Full Speed USB Flash MCU Family
Analog Peripherals
-10-Bit ADC (C8051F340/1/2/3/4/5/6/7/A/B only)
Up to 200 ksps
Built-in analog multiplexer with single-ended and
differential mode
VREF from external pin, internal reference, or VDD
Built-in temperature sensor
External conversion start input option
-Two comparators
-Internal voltage reference
(C8051F340/1/2/3/4/5/6/7/A/B only)
-Brown-out detector and POR Circuitry
USB Function Controller
-USB specification 2.0 compliant
-Full speed (12 Mbps) or low speed (1.5 Mbps) operation
-Integrated clock recovery; no external crystal required for
full speed or low speed
-Supports eight flexible endpoints
-1 kB USB buffer memory
-Integrated transceiver; no external resistors required
On-Chip Debug
-On-chip debug circuitry facilitates full speed, non-intru-
sive in-system debug (No emulator required)
-Provides breakpoints, single stepping,
inspect/modify memory and registers
-Superior performance to emulation systems using
ICE-chips, target pods, and sockets
Voltage Supply Input: 2.7 to 5.25 V
-Voltages from 3.6 to 5.25 V supported using On-Chip
Voltage Regulator
HIgh Speed 8051 µC Core
-Pipelined instruction architecture; executes 70% of
Instructions in 1 or 2 system clocks
-48 MIPS and 25 MIPS versions available.
-Expanded interrupt handler
Memory
-4352 or 2304 Bytes RAM
-64 or 32 kB Flash; In-system programmable in 512-byte
sectors
Digital Peripherals
-40/25 Port I/O; All 5 V tolerant with high sink current
-Hardware enhanced SPI™, SMBus™, and one or two
enhanced UART serial ports
-Four general purpose 16-bit counter/timers
-16-bit programmable counter array (PCA) with five cap-
ture/compare modules
-External Memory Interface (EMIF)
Clock Sources
-Internal Oscillator: ±0.25% accuracy with clock recovery
enabled. Supports all USB and UART modes
-External Oscillator: Crystal, RC, C, or clock (1 or 2 Pin
modes)
-Low Frequency (80 kHz) Internal Oscillator
-Can switch between clock sources on-the-fly
Packages
-48-pin TQFP (C8051F340/1/4/5/8/C)
-32-pin LQFP (C8051F342/3/6/7/9/A/B/D)
-5x5 mm 32-pin QFN (C8051F342/3/6/7/9/A/B)
Temperature Range: –40 to +85 °C
ANALOG
PERIPHERALS
10-bit
200 ksps
ADC
64/32 kB
ISP FLASH 4/2 kB RAM
POR
DEBUG
CIRCUITRY
FLEXIBLE
INTERRUPTS
8051 CPU
(48/25 MIPS)
DIGITAL I/O
PRECISION INTERNAL
OSCILLATORS
HIGH-SPEED CONTROLLER CORE
A
M
U
X
CROSSBAR
+
-
WDT
+
-
USB Controller /
Transceiver
Port 0
Port 1
Port 2
Port 3
TEMP
SENSOR
VREG
VREF Port 4
Ext. Memory I/F
48 Pin Only
UART0
SMBus
PCA
4 Timers
SPI
UART1*
C8051F340/1/2/34/5/6/7/A/B Only * C8051F340/1/4/5/8/A/B/C Only
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
2 Rev. 1.5
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 3
Table of Contents
1. System Overview.................................................................................................... 17
2. Absolute Maximum Ratings .................................................................................. 24
3. Global DC Electrical Characteristics .................................................................... 25
4. Pinout and Package Definitions............................................................................ 28
5. 10-Bit ADC (ADC0, C8051F340/1/2/3/4/5/6/7/A/B Only)........................................ 41
5.1. Analog Multiplexer ............................................................................................ 42
5.2. Temperature Sensor......................................................................................... 43
5.3. Modes of Operation .......................................................................................... 45
5.3.1. Starting a Conversion............................................................................... 45
5.3.2. Tracking Modes........................................................................................ 46
5.3.3. Settling Time Requirements..................................................................... 47
5.4. Programmable Window Detector...................................................................... 52
5.4.1. Window Detector In Single-Ended Mode ................................................. 54
5.4.2. Window Detector In Differential Mode...................................................... 55
6. Voltage Reference (C8051F340/1/2/3/4/5/6/7/A/B Only)....................................... 57
7. Comparators........................................................................................................... 59
8. Voltage Regulator (REG0)...................................................................................... 69
8.1. Regulator Mode Selection................................................................................. 69
8.2. VBUS Detection................................................................................................ 69
9. CIP-51 Microcontroller........................................................................................... 73
9.1. Instruction Set................................................................................................... 74
9.1.1. Instruction and CPU Timing ..................................................................... 74
9.1.2. MOVX Instruction and Program Memory ................................................. 75
9.2. Memory Organization........................................................................................ 79
9.2.1. Program Memory...................................................................................... 80
9.2.2. Data Memory............................................................................................ 81
9.2.3. General Purpose Registers...................................................................... 81
9.2.4. Bit Addressable Locations........................................................................ 81
9.2.5. Stack ....................................................................................................... 81
9.2.6. Special Function Registers....................................................................... 82
9.2.7. Register Descriptions ............................................................................... 86
9.3. Interrupt Handler............................................................................................... 88
9.3.1. MCU Interrupt Sources and Vectors ........................................................ 88
9.3.2. External Interrupts.................................................................................... 88
9.3.3. Interrupt Priorities..................................................................................... 89
9.3.4. Interrupt Latency ...................................................................................... 89
9.3.5. Interrupt Register Descriptions................................................................. 90
9.4. Power Management Modes.............................................................................. 97
9.4.1. Idle Mode.................................................................................................. 97
9.4.2. Stop Mode................................................................................................ 97
10.Prefetch Engine ...................................................................................................... 99
11.Reset Sources....................................................................................................... 100
11.1.Power-On Reset............................................................................................. 101
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
4 Rev. 1.5
11.2.Power-Fail Reset / VDD Monitor .................................................................... 102
11.3.External Reset................................................................................................ 103
11.4.Missing Clock Detector Reset ........................................................................ 103
11.5.Comparator0 Reset ........................................................................................ 103
11.6.PCA Watchdog Timer Reset .......................................................................... 103
11.7.Flash Error Reset ........................................................................................... 103
11.8.Software Reset............................................................................................... 104
11.9.USB Reset...................................................................................................... 104
12.Flash Memory ....................................................................................................... 107
12.1.Programming The Flash Memory................................................................... 107
12.1.1.Flash Lock and Key Functions............................................................... 107
12.1.2.Flash Erase Procedure .......................................................................... 107
12.1.3.Flash Write Procedure ........................................................................... 108
12.2.Non-Volatile Data Storage.............................................................................. 109
12.3.Security Options............................................................................................. 109
13.External Data Memory Interface and On-Chip XRAM........................................ 114
13.1.Accessing XRAM............................................................................................ 114
13.1.1.16-Bit MOVX Example ........................................................................... 114
13.1.2.8-Bit MOVX Example ............................................................................. 114
13.2.Accessing USB FIFO Space .......................................................................... 115
13.3.Configuring the External Memory Interface.................................................... 116
13.4.Port Configuration........................................................................................... 116
13.5.Multiplexed and Non-multiplexed Selection.................................................... 119
13.5.1.Multiplexed Configuration....................................................................... 119
13.5.2.Non-multiplexed Configuration............................................................... 120
13.6.Memory Mode Selection................................................................................. 120
13.6.1.Internal XRAM Only ............................................................................... 121
13.6.2.Split Mode without Bank Select.............................................................. 121
13.6.3.Split Mode with Bank Select................................................................... 122
13.6.4.External Only.......................................................................................... 122
13.7.Timing .......................................................................................................... 122
13.7.1.Non-multiplexed Mode ........................................................................... 124
13.7.2.Multiplexed Mode................................................................................... 127
14.Oscillators............................................................................................................. 131
14.1.Programmable Internal High-Frequency (H-F) Oscillator............................... 132
14.1.1.Internal H-F Oscillator Suspend Mode................................................... 132
14.2.Programmable Internal Low-Frequency (L-F) Oscillator ................................ 133
14.2.1.Calibrating the Internal L-F Oscillator..................................................... 133
14.3.External Oscillator Drive Circuit...................................................................... 135
14.3.1.Clocking Timers Directly Through the External Oscillator...................... 135
14.3.2.External Crystal Example....................................................................... 135
14.3.3.External RC Example............................................................................. 136
14.3.4.External Capacitor Example................................................................... 136
14.4.4x Clock Multiplier .......................................................................................... 138
14.5.System and USB Clock Selection .................................................................. 139
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 5
14.5.1.System Clock Selection ......................................................................... 139
14.5.2.USB Clock Selection.............................................................................. 139
15.Port Input/Output.................................................................................................. 142
15.1.Priority Crossbar Decoder .............................................................................. 144
15.2.Port I/O Initialization ....................................................................................... 147
15.3.General Purpose Port I/O............................................................................... 150
16.Universal Serial Bus Controller (USB0).............................................................. 159
16.1.Endpoint Addressing ...................................................................................... 160
16.2.USB Transceiver ............................................................................................ 160
16.3.USB Register Access ..................................................................................... 162
16.4.USB Clock Configuration................................................................................ 166
16.5.FIFO Management ......................................................................................... 167
16.5.1.FIFO Split Mode..................................................................................... 167
16.5.2.FIFO Double Buffering ........................................................................... 168
16.5.3.FIFO Access .......................................................................................... 168
16.6.Function Addressing....................................................................................... 169
16.7.Function Configuration and Control................................................................ 169
16.8.Interrupts ........................................................................................................ 172
16.9.The Serial Interface Engine............................................................................ 176
16.10.Endpoint0 ..................................................................................................... 176
16.10.1.Endpoint0 SETUP Transactions .......................................................... 177
16.10.2.Endpoint0 IN Transactions................................................................... 177
16.10.3.Endpoint0 OUT Transactions............................................................... 178
16.11.Configuring Endpoints1-3............................................................................. 180
16.12.Controlling Endpoints1-3 IN.......................................................................... 180
16.12.1.Endpoints1-3 IN Interrupt or Bulk Mode............................................... 180
16.12.2.Endpoints1-3 IN Isochronous Mode..................................................... 181
16.13.Controlling Endpoints1-3 OUT...................................................................... 183
16.13.1.Endpoints1-3 OUT Interrupt or Bulk Mode........................................... 183
16.13.2.Endpoints1-3 OUT Isochronous Mode................................................. 184
17.SMBus ................................................................................................................... 188
17.1.Supporting Documents................................................................................... 189
17.2.SMBus Configuration...................................................................................... 189
17.3.SMBus Operation........................................................................................... 189
17.3.1.Arbitration............................................................................................... 190
17.3.2.Clock Low Extension.............................................................................. 191
17.3.3.SCL Low Timeout................................................................................... 191
17.3.4.SCL High (SMBus Free) Timeout .......................................................... 191
17.4.Using the SMBus............................................................................................ 191
17.4.1.SMBus Configuration Register............................................................... 192
17.4.2.SMB0CN Control Register ..................................................................... 195
17.4.3.Data Register ......................................................................................... 198
17.5.SMBus Transfer Modes.................................................................................. 198
17.5.1.Master Transmitter Mode....................................................................... 198
17.5.2.Master Receiver Mode........................................................................... 200
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
6 Rev. 1.5
17.5.3.Slave Receiver Mode............................................................................. 201
17.5.4.Slave Transmitter Mode......................................................................... 202
17.6.SMBus Status Decoding................................................................................. 202
18.UART0.................................................................................................................... 205
18.1.Enhanced Baud Rate Generation................................................................... 206
18.2.Operational Modes ......................................................................................... 206
18.2.1.8-Bit UART............................................................................................. 207
18.2.2.9-Bit UART............................................................................................. 208
18.3.Multiprocessor Communications .................................................................... 208
19.UART1 (C8051F340/1/4/5/8/A/B/C Only).............................................................. 213
19.1.Baud Rate Generator ..................................................................................... 214
19.2.Data Format.................................................................................................... 215
19.3.Configuration and Operation .......................................................................... 216
19.3.1.Data Transmission ................................................................................. 216
19.3.2.Data Reception ...................................................................................... 216
19.3.3.Multiprocessor Communications............................................................ 217
20.Enhanced Serial Peripheral Interface (SPI0)...................................................... 222
20.1.Signal Descriptions......................................................................................... 223
20.1.1.Master Out, Slave In (MOSI).................................................................. 223
20.1.2.Master In, Slave Out (MISO).................................................................. 223
20.1.3.Serial Clock (SCK) ................................................................................. 223
20.1.4.Slave Select (NSS) ................................................................................ 223
20.2.SPI0 Master Mode Operation......................................................................... 224
20.3.SPI0 Slave Mode Operation........................................................................... 226
20.4.SPI0 Interrupt Sources................................................................................... 226
20.5.Serial Clock Timing......................................................................................... 227
20.6.SPI Special Function Registers...................................................................... 229
21.Timers.................................................................................................................... 235
21.1.Timer 0 and Timer 1 ....................................................................................... 235
21.1.1.Mode 0: 13-bit Counter/Timer ................................................................ 235
21.1.2.Mode 1: 16-bit Counter/Timer ................................................................ 236
21.1.3.Mode 2: 8-bit Counter/Timer with Auto-Reload...................................... 237
21.1.4.Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)................................. 238
21.2.Timer 2 .......................................................................................................... 243
21.2.1.16-bit Timer with Auto-Reload................................................................ 243
21.2.2.8-bit Timers with Auto-Reload................................................................ 244
21.2.3.Timer 2 Capture Modes: USB Start-of-Frame or LFO Falling Edge ...... 245
21.3.Timer 3 .......................................................................................................... 249
21.3.1.16-bit Timer with Auto-Reload................................................................ 249
21.3.2.8-bit Timers with Auto-Reload................................................................ 250
21.3.3.USB Start-of-Frame Capture.................................................................. 251
22.Programmable Counter Array (PCA0) ................................................................ 255
22.1.PCA Counter/Timer ........................................................................................ 256
22.2.Capture/Compare Modules ............................................................................ 257
22.2.1.Edge-triggered Capture Mode................................................................ 258
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 7
22.2.2.Software Timer (Compare) Mode........................................................... 259
22.2.3.High Speed Output Mode....................................................................... 260
22.2.4.Frequency Output Mode ........................................................................ 261
22.2.5.8-Bit Pulse Width Modulator Mode......................................................... 262
22.2.6.16-Bit Pulse Width Modulator Mode....................................................... 263
22.3.Watchdog Timer Mode ................................................................................... 264
22.3.1.Watchdog Timer Operation.................................................................... 264
22.3.2.Watchdog Timer Usage ......................................................................... 265
22.4.Register Descriptions for PCA........................................................................ 266
23.C2 Interface........................................................................................................... 271
23.1.C2 Interface Registers.................................................................................... 271
23.2.C2 Pin Sharing ............................................................................................... 273
Document Change List............................................................................................. 274
Contact Information.................................................................................................. 276
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 8
List of Figures
1. System Overview
Figure 1.1. C8051F340/1/4/5 Block Diagram ........................................................... 19
Figure 1.2. C8051F342/3/6/7 Block Diagram ........................................................... 20
Figure 1.3. C8051F348/C Block Diagram................................................................. 21
Figure 1.4. C8051F349/D Block Diagram................................................................. 22
Figure 1.5. C8051F34A/B Block Diagram ................................................................ 23
4. Pinout and Package Definitions
Figure 4.1. TQFP-48 Pinout Diagram (Top View) .................................................... 31
Figure 4.2. TQFP-48 Package Diagram................................................................... 32
Figure 4.3. TQFP-48 Recommended PCB Land Pattern ......................................... 33
Figure 4.4. LQFP-32 Pinout Diagram (Top View)..................................................... 34
Figure 4.5. LQFP-32 Package Diagram................................................................... 35
Figure 4.6. LQFP-32 Recommended PCB Land Pattern ......................................... 36
Figure 4.7. QFN-32 Pinout Diagram (Top View) ...................................................... 37
5. 10-Bit ADC (ADC0, C8051F340/1/2/3/4/5/6/7/A/B Only)
Figure 5.1. ADC0 Functional Block Diagram............................................................ 41
Figure 5.2. Temperature Sensor Transfer Function................................................. 43
Figure 5.3. Temperature Sensor Error with 1-Point Calibration (VREF = 2.40 V).... 44
Figure 5.4. 10-Bit ADC Track and Conversion Example Timing .............................. 46
Figure 5.5. ADC0 Equivalent Input Circuits.............................................................. 47
Figure 5.6. ADC Window Compare Example: Right-Justified Single-Ended Data ... 54
Figure 5.7. ADC Window Compare Example: Left-Justified Single-Ended Data...... 54
Figure 5.8. ADC Window Compare Example: Right-Justified Differential Data........ 55
Figure 5.9. ADC Window Compare Example: Left-Justified Differential Data.......... 55
6. Voltage Reference (C8051F340/1/2/3/4/5/6/7/A/B Only)
Figure 6.1. Voltage Reference Functional Block Diagram........................................ 57
7. Comparators
Figure 7.1. Comparator Functional Block Diagram .................................................. 60
Figure 7.2. Comparator Hysteresis Plot ................................................................... 61
8. Voltage Regulator (REG0)
Figure 8.1. REG0 Configuration: USB Bus-Powered............................................... 70
Figure 8.2. REG0 Configuration: USB Self-Powered ............................................... 70
Figure 8.3. REG0 Configuration: USB Self-Powered, Regulator Disabled............... 71
Figure 8.4. REG0 Configuration: No USB Connection............................................. 71
9. CIP-51 Microcontroller
Figure 9.1. CIP-51 Block Diagram............................................................................ 73
Figure 9.2. On-Chip Memory Map for 64 kB Devices............................................... 79
Figure 9.3. On-Chip Memory Map for 32 kB Devices............................................... 80
11. Reset Sources
Figure 11.1. Reset Sources.................................................................................... 100
Figure 11.2. Power-On and VDD Monitor Reset Timing ........................................ 101
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
9 Rev. 1.5
12. Flash Memory
Figure 12.1. Flash Program Memory Map and Security Byte................................. 110
13. External Data Memory Interface and On-Chip XRAM
Figure 13.1. USB FIFO Space and XRAM Memory Map
with USBFAE set to ‘1’...................................................................................... 115
Figure 13.2. Multiplexed Configuration Example.................................................... 119
Figure 13.3. Non-multiplexed Configuration Example............................................ 120
Figure 13.4. EMIF Operating Modes ...................................................................... 120
Figure 13.5. Non-multiplexed 16-bit MOVX Timing................................................ 124
Figure 13.6. Non-multiplexed 8-bit MOVX without Bank Select Timing ................. 125
Figure 13.7. Non-multiplexed 8-bit MOVX with Bank Select Timing ...................... 126
Figure 13.8. Multiplexed 16-bit MOVX Timing........................................................ 127
Figure 13.9. Multiplexed 8-bit MOVX without Bank Select Timing ......................... 128
Figure 13.10. Multiplexed 8-bit MOVX with Bank Select Timing ............................ 129
14. Oscillators
Figure 14.1. Oscillator Diagram.............................................................................. 131
15. Port Input/Output
Figure 15.1. Port I/O Functional Block Diagram (Port 0 through Port 3) ................ 142
Figure 15.2. Port I/O Cell Block Diagram ............................................................... 143
Figure 15.3. Peripheral Availability on Port I/O Pins............................................... 144
Figure 15.4. Crossbar Priority Decoder in Example Configuration
(No Pins Skipped) ............................................................................................. 145
Figure 15.5. Crossbar Priority Decoder in
Example Configuration (3 Pins Skipped) .......................................................... 146
16. Universal Serial Bus Controller (USB0)
Figure 16.1. USB0 Block Diagram.......................................................................... 159
Figure 16.2. USB0 Register Access Scheme......................................................... 162
Figure 16.3. USB FIFO Allocation.......................................................................... 167
17. SMBus
Figure 17.1. SMBus Block Diagram ....................................................................... 188
Figure 17.2. Typical SMBus Configuration............................................................. 189
Figure 17.3. SMBus Transaction............................................................................ 190
Figure 17.4. Typical SMBus SCL Generation......................................................... 193
Figure 17.5. Typical Master Transmitter Sequence................................................ 199
Figure 17.6. Typical Master Receiver Sequence.................................................... 200
Figure 17.7. Typical Slave Receiver Sequence...................................................... 201
Figure 17.8. Typical Slave Transmitter Sequence.................................................. 202
18. UART0
Figure 18.1. UART0 Block Diagram ....................................................................... 205
Figure 18.2. UART0 Baud Rate Logic.................................................................... 206
Figure 18.3. UART Interconnect Diagram .............................................................. 207
Figure 18.4. 8-Bit UART Timing Diagram............................................................... 207
Figure 18.5. 9-Bit UART Timing Diagram............................................................... 208
Figure 18.6. UART Multi-Processor Mode Interconnect Diagram .......................... 209
19. UART1 (C8051F340/1/4/5/8/A/B/C Only)
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 10
Figure 19.1. UART1 Block Diagram ....................................................................... 213
Figure 19.2. UART1 Timing Without Parity or Extra Bit.......................................... 215
Figure 19.3. UART1 Timing With Parity ................................................................. 215
Figure 19.4. UART1 Timing With Extra Bit............................................................. 215
Figure 19.5. Typical UART Interconnect Diagram.................................................. 216
Figure 19.6. UART Multi-Processor Mode Interconnect Diagram .......................... 218
20. Enhanced Serial Peripheral Interface (SPI0)
Figure 20.1. SPI Block Diagram ............................................................................. 222
Figure 20.2. Multiple-Master Mode Connection Diagram....................................... 225
Figure 20.3. 3-Wire Single Master and Slave Mode Connection Diagram............. 225
Figure 20.4. 4-Wire Single Master Mode and Slave Mode Connection Diagram... 225
Figure 20.5. Master Mode Data/Clock Timing........................................................ 227
Figure 20.6. Slave Mode Data/Clock Timing (CKPHA = 0).................................... 228
Figure 20.7. Slave Mode Data/Clock Timing (CKPHA = 1).................................... 228
Figure 20.8. SPI Master Timing (CKPHA = 0)........................................................ 232
Figure 20.9. SPI Master Timing (CKPHA = 1)........................................................ 232
Figure 20.10. SPI Slave Timing (CKPHA = 0)........................................................ 233
Figure 20.11. SPI Slave Timing (CKPHA = 1)........................................................ 233
21. Timers
Figure 21.1. T0 Mode 0 Block Diagram.................................................................. 236
Figure 21.2. T0 Mode 2 Block Diagram.................................................................. 237
Figure 21.3. T0 Mode 3 Block Diagram.................................................................. 238
Figure 21.4. Timer 2 16-Bit Mode Block Diagram .................................................. 243
Figure 21.5. Timer 2 8-Bit Mode Block Diagram .................................................... 244
Figure 21.6. Timer 2 Capture Mode (T2SPLIT = ‘0’).............................................. 245
Figure 21.7. Timer 2 Capture Mode (T2SPLIT = ‘1’).............................................. 246
Figure 21.8. Timer 3 16-Bit Mode Block Diagram .................................................. 249
Figure 21.9. Timer 3 8-Bit Mode Block Diagram .................................................... 250
Figure 21.10. Timer 3 Capture Mode (T3SPLIT = ‘0’)............................................ 251
Figure 21.11. Timer 3 Capture Mode (T3SPLIT = ‘1’)............................................ 252
22. Programmable Counter Array (PCA0)
Figure 22.1. PCA Block Diagram............................................................................ 255
Figure 22.2. PCA Counter/Timer Block Diagram.................................................... 256
Figure 22.3. PCA Interrupt Block Diagram............................................................. 257
Figure 22.4. PCA Capture Mode Diagram.............................................................. 258
Figure 22.5. PCA Software Timer Mode Diagram.................................................. 259
Figure 22.6. PCA High Speed Output Mode Diagram............................................ 260
Figure 22.7. PCA Frequency Output Mode............................................................ 261
Figure 22.8. PCA 8-Bit PWM Mode Diagram ......................................................... 262
Figure 22.9. PCA 16-Bit PWM Mode...................................................................... 263
Figure 22.10. PCA Module 4 with Watchdog Timer Enabled ................................. 264
23. C2 Interface
Figure 23.1. Typical C2 Pin Sharing....................................................................... 273
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 11
List of Tables
1. System Overview
Table 1.1. Product Selection Guide ......................................................................... 18
2. Absolute Maximum Ratings
Table 2.1. Absolute Maximum Ratings* .................................................................. 24
3. Global DC Electrical Characteristics
Table 3.1. Global DC Electrical Characteristics ....................................................... 25
Table 3.2. Index to Electrical Characteristics Tables ............................................... 27
4. Pinout and Package Definitions
Table 4.1. Pin Definitions for the C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D ................. 28
Table 4.2. TQFP-48 Package Dimensions .............................................................. 32
Table 4.3. TQFP-48 PCB Land Pattern Dimensions ............................................... 33
Table 4.4. LQFP-32 Package Dimensions .............................................................. 35
Table 4.5. LQFP-32 PCB Land Pattern Dimensions ............................................... 36
5. 10-Bit ADC (ADC0, C8051F340/1/2/3/4/5/6/7/A/B Only)
Table 5.1. ADC0 Electrical Characteristics .............................................................. 56
6. Voltage Reference (C8051F340/1/2/3/4/5/6/7/A/B Only)
Table 6.1. Voltage Reference Electrical Characteristics ......................................... 58
7. Comparators
Table 7.1. Comparator Electrical Characteristics .................................................... 68
8. Voltage Regulator (REG0)
Table 8.1. Voltage Regulator Electrical Specifications ............................................ 69
9. CIP-51 Microcontroller
Table 9.1. CIP-51 Instruction Set Summary ............................................................ 75
Table 9.2. Special Function Register (SFR) Memory Map ...................................... 82
Table 9.3. Special Function Registers ..................................................................... 83
Table 9.4. Interrupt Summary .................................................................................. 90
11. Reset Sources
Table 11.1. Reset Electrical Characteristics .......................................................... 106
12. Flash Memory
Table 12.1. Flash Electrical Characteristics .......................................................... 109
13. External Data Memory Interface and On-Chip XRAM
Table 13.1. AC Parameters for External Memory Interface ................................... 130
14. Oscillators
Table 14.1. Oscillator Electrical Characteristics .................................................... 141
15. Port Input/Output
Table 15.1. Port I/O DC Electrical Characteristics ................................................. 158
16. Universal Serial Bus Controller (USB0)
Table 16.1. Endpoint Addressing Scheme ............................................................ 160
Table 16.2. USB0 Controller Registers ................................................................. 165
Table 16.3. FIFO Configurations ........................................................................... 168
Table 16.4. USB Transceiver Electrical Characteristics ........................................ 187
17. SMBus
Table 17.1. SMBus Clock Source Selection .......................................................... 192
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
12 Rev. 1.5
Table 17.2. Minimum SDA Setup and Hold Times ................................................ 193
Table 17.3. Sources for Hardware Changes to SMB0CN ..................................... 197
Table 17.4. SMBus Status Decoding ..................................................................... 203
18. UART0
Table 18.1. Timer Settings for Standard Baud Rates
Using the Internal Oscillator ............................................................... 212
19. UART1 (C8051F340/1/4/5/8/A/B/C Only)
Table 19.1. Baud Rate Generator Settings for Standard Baud Rates ................... 214
20. Enhanced Serial Peripheral Interface (SPI0)
Table 20.1. SPI Slave Timing Parameters ............................................................ 234
22. Programmable Counter Array (PCA0)
Table 22.1. PCA Timebase Input Options ............................................................. 256
Table 22.2. PCA0CPM Register Settings for PCA Capture/Compare Modules .... 257
Table 22.3. Watchdog Timer Timeout Intervals1 ................................................... 265
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 13
List of Registers
SFR Definition 5.1. AMX0P: AMUX0 Positive Channel Select . . . . . . . . . . . . . . . . . . . 48
SFR Definition 5.2. AMX0N: AMUX0 Negative Channel Select . . . . . . . . . . . . . . . . . . 49
SFR Definition 5.3. ADC0CF: ADC0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
SFR Definition 5.4. ADC0H: ADC0 Data Word MSB . . . . . . . . . . . . . . . . . . . . . . . . . . 50
SFR Definition 5.5. ADC0L: ADC0 Data Word LSB . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
SFR Definition 5.6. ADC0CN: ADC0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
SFR Definition 5.7. ADC0GTH: ADC0 Greater-Than Data High Byte . . . . . . . . . . . . . 52
SFR Definition 5.8. ADC0GTL: ADC0 Greater-Than Data Low Byte . . . . . . . . . . . . . . 52
SFR Definition 5.9. ADC0LTH: ADC0 Less-Than Data High Byte . . . . . . . . . . . . . . . . 53
SFR Definition 5.10. ADC0LTL: ADC0 Less-Than Data Low Byte . . . . . . . . . . . . . . . 53
SFR Definition 6.1. REF0CN: Reference Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
SFR Definition 7.1. CPT0CN: Comparator0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
SFR Definition 7.2. CPT0MX: Comparator0 MUX Selection . . . . . . . . . . . . . . . . . . . . 63
SFR Definition 7.3. CPT0MD: Comparator0 Mode Selection . . . . . . . . . . . . . . . . . . . . 64
SFR Definition 7.4. CPT1CN: Comparator1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
SFR Definition 7.5. CPT1MX: Comparator1 MUX Selection . . . . . . . . . . . . . . . . . . . . 66
SFR Definition 7.6. CPT1MD: Comparator1 Mode Selection . . . . . . . . . . . . . . . . . . . . 67
SFR Definition 8.1. REG0CN: Voltage Regulator Control . . . . . . . . . . . . . . . . . . . . . . 72
SFR Definition 9.1. DPL: Data Pointer Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
SFR Definition 9.2. DPH: Data Pointer High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
SFR Definition 9.3. SP: Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
SFR Definition 9.4. PSW: Program Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
SFR Definition 9.5. ACC: Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
SFR Definition 9.6. B: B Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
SFR Definition 9.7. IE: Interrupt Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
SFR Definition 9.8. IP: Interrupt Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
SFR Definition 9.9. EIE1: Extended Interrupt Enable 1 . . . . . . . . . . . . . . . . . . . . . . . . 93
SFR Definition 9.10. EIP1: Extended Interrupt Priority 1 . . . . . . . . . . . . . . . . . . . . . . . 94
SFR Definition 9.11. EIE2: Extended Interrupt Enable 2 . . . . . . . . . . . . . . . . . . . . . . . 95
SFR Definition 9.12. EIP2: Extended Interrupt Priority 2 . . . . . . . . . . . . . . . . . . . . . . . 95
SFR Definition 9.13. IT01CF: INT0/INT1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . 96
SFR Definition 9.14. PCON: Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
SFR Definition 10.1. PFE0CN: Prefetch Engine Control . . . . . . . . . . . . . . . . . . . . . . . 99
SFR Definition 11.1. VDM0CN: VDD Monitor Control . . . . . . . . . . . . . . . . . . . . . . . . . 102
SFR Definition 11.2. RSTSRC: Reset Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
SFR Definition 12.1. PSCTL: Program Store R/W Control . . . . . . . . . . . . . . . . . . . . . 112
SFR Definition 12.2. FLKEY: Flash Lock and Key . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
SFR Definition 12.3. FLSCL: Flash Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
SFR Definition 13.1. EMI0CN: External Memory Interface Control . . . . . . . . . . . . . . 117
SFR Definition 13.2. EMI0CF: External Memory Configuration . . . . . . . . . . . . . . . . . 118
SFR Definition 13.3. EMI0TC: External Memory Timing Control . . . . . . . . . . . . . . . . 123
SFR Definition 14.1. OSCICN: Internal H-F Oscillator Control . . . . . . . . . . . . . . . . . . 132
SFR Definition 14.2. OSCICL: Internal H-F Oscillator Calibration . . . . . . . . . . . . . . . 133
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
14 Rev. 1.5
SFR Definition 14.3. OSCLCN: Internal L-F Oscillator Control . . . . . . . . . . . . . . . . . . 134
SFR Definition 14.4. OSCXCN: External Oscillator Control . . . . . . . . . . . . . . . . . . . . 137
SFR Definition 14.5. CLKMUL: Clock Multiplier Control . . . . . . . . . . . . . . . . . . . . . . . 138
SFR Definition 14.6. CLKSEL: Clock Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
SFR Definition 15.1. XBR0: Port I/O Crossbar Register 0 . . . . . . . . . . . . . . . . . . . . . 148
SFR Definition 15.2. XBR1: Port I/O Crossbar Register 1 . . . . . . . . . . . . . . . . . . . . . 149
SFR Definition 15.3. XBR2: Port I/O Crossbar Register 2 . . . . . . . . . . . . . . . . . . . . . 149
SFR Definition 15.4. P0: Port0 Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
SFR Definition 15.5. P0MDIN: Port0 Input Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
SFR Definition 15.6. P0MDOUT: Port0 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . 151
SFR Definition 15.7. P0SKIP: Port0 Skip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
SFR Definition 15.8. P1: Port1 Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
SFR Definition 15.9. P1MDIN: Port1 Input Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
SFR Definition 15.10. P1MDOUT: Port1 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . 152
SFR Definition 15.11. P1SKIP: Port1 Skip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
SFR Definition 15.12. P2: Port2 Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
SFR Definition 15.13. P2MDIN: Port2 Input Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
SFR Definition 15.14. P2MDOUT: Port2 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . 154
SFR Definition 15.15. P2SKIP: Port2 Skip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
SFR Definition 15.16. P3: Port3 Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
SFR Definition 15.17. P3MDIN: Port3 Input Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
SFR Definition 15.18. P3MDOUT: Port3 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . 155
SFR Definition 15.19. P3SKIP: Port3 Skip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
SFR Definition 15.20. P4: Port4 Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
SFR Definition 15.21. P4MDIN: Port4 Input Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
SFR Definition 15.22. P4MDOUT: Port4 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . 157
SFR Definition 16.1. USB0XCN: USB0 Transceiver Control . . . . . . . . . . . . . . . . . . . 161
SFR Definition 16.2. USB0ADR: USB0 Indirect Address . . . . . . . . . . . . . . . . . . . . . . 163
SFR Definition 16.3. USB0DAT: USB0 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
USB Register Definition 16.4. INDEX: USB0 Endpoint Index . . . . . . . . . . . . . . . . . . . 165
USB Register Definition 16.5. CLKREC: Clock Recovery Control . . . . . . . . . . . . . . . 166
USB Register Definition 16.6. FIFOn: USB0 Endpoint FIFO Access . . . . . . . . . . . . . 168
USB Register Definition 16.7. FADDR: USB0 Function Address . . . . . . . . . . . . . . . . 169
USB Register Definition 16.8. POWER: USB0 Power . . . . . . . . . . . . . . . . . . . . . . . . 171
USB Register Definition 16.9. FRAMEL: USB0 Frame Number Low . . . . . . . . . . . . . 172
USB Register Definition 16.10. FRAMEH: USB0 Frame Number High . . . . . . . . . . . 172
USB Register Definition 16.11. IN1INT: USB0 IN Endpoint Interrupt . . . . . . . . . . . . . 173
USB Register Definition 16.12. OUT1INT: USB0 Out Endpoint Interrupt . . . . . . . . . . 173
USB Register Definition 16.13. CMINT: USB0 Common Interrupt . . . . . . . . . . . . . . . 174
USB Register Definition 16.14. IN1IE: USB0 IN Endpoint Interrupt Enable . . . . . . . . 175
USB Register Definition 16.15. OUT1IE: USB0 Out Endpoint Interrupt Enable . . . . . 175
USB Register Definition 16.16. CMIE: USB0 Common Interrupt Enable . . . . . . . . . . 176
USB Register Definition 16.17. E0CSR: USB0 Endpoint0 Control . . . . . . . . . . . . . . . 179
USB Register Definition 16.18. E0CNT: USB0 Endpoint 0 Data Count . . . . . . . . . . . 180
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 15
USB Register Definition 16.19. EINCSRL: USB0 IN Endpoint Control Low Byte . . . . 182
USB Register Definition 16.20. EINCSRH: USB0 IN Endpoint Control High Byte . . . 183
USB Register Definition 16.21. EOUTCSRL: USB0 OUT
Endpoint Control Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
USB Register Definition 16.22. EOUTCSRH: USB0 OUT
Endpoint Control High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
USB Register Definition 16.23. EOUTCNTL: USB0 OUT Endpoint Count Low . . . . . 186
USB Register Definition 16.24. EOUTCNTH: USB0 OUT Endpoint Count High . . . . 186
SFR Definition 17.1. SMB0CF: SMBus Clock/Configuration . . . . . . . . . . . . . . . . . . . 194
SFR Definition 17.2. SMB0CN: SMBus Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
SFR Definition 17.3. SMB0DAT: SMBus Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
SFR Definition 18.1. SCON0: Serial Port 0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . 210
SFR Definition 18.2. SBUF0: Serial (UART0) Port Data Buffer . . . . . . . . . . . . . . . . . 211
SFR Definition 19.1. SCON1: UART1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
SFR Definition 19.2. SMOD1: UART1 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
SFR Definition 19.3. SBUF1: UART1 Data Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
SFR Definition 19.4. SBCON1: UART1 Baud Rate Generator Control . . . . . . . . . . . 220
SFR Definition 19.5. SBRLH1: UART1 Baud Rate Generator High Byte . . . . . . . . . . 221
SFR Definition 19.6. SBRLL1: UART1 Baud Rate Generator Low Byte . . . . . . . . . . . 221
SFR Definition 20.1. SPI0CFG: SPI0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 229
SFR Definition 20.2. SPI0CN: SPI0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
SFR Definition 20.3. SPI0CKR: SPI0 Clock Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
SFR Definition 20.4. SPI0DAT: SPI0 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
SFR Definition 21.1. TCON: Timer Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
SFR Definition 21.2. TMOD: Timer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
SFR Definition 21.3. CKCON: Clock Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
SFR Definition 21.4. TL0: Timer 0 Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
SFR Definition 21.5. TL1: Timer 1 Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
SFR Definition 21.6. TH0: Timer 0 High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
SFR Definition 21.7. TH1: Timer 1 High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
SFR Definition 21.8. TMR2CN: Timer 2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
SFR Definition 21.9. TMR2RLL: Timer 2 Reload Register Low Byte . . . . . . . . . . . . . 248
SFR Definition 21.10. TMR2RLH: Timer 2 Reload Register High Byte . . . . . . . . . . . 248
SFR Definition 21.11. TMR2L: Timer 2 Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
SFR Definition 21.12. TMR2H Timer 2 High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
SFR Definition 21.13. TMR3CN: Timer 3 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
SFR Definition 21.14. TMR3RLL: Timer 3 Reload Register Low Byte . . . . . . . . . . . . 254
SFR Definition 21.15. TMR3RLH: Timer 3 Reload Register High Byte . . . . . . . . . . . 254
SFR Definition 21.16. TMR3L: Timer 3 Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
SFR Definition 21.17. TMR3H Timer 3 High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
SFR Definition 22.1. PCA0CN: PCA Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
SFR Definition 22.2. PCA0MD: PCA Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
SFR Definition 22.3. PCA0CPMn: PCA Capture/Compare Mode . . . . . . . . . . . . . . . 268
SFR Definition 22.4. PCA0L: PCA Counter/Timer Low Byte . . . . . . . . . . . . . . . . . . . 269
SFR Definition 22.5. PCA0H: PCA Counter/Timer High Byte . . . . . . . . . . . . . . . . . . . 269
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
16 Rev. 1.5
SFR Definition 22.6. PCA0CPLn: PCA Capture Module Low Byte . . . . . . . . . . . . . . . 269
SFR Definition 22.7. PCA0CPHn: PCA Capture Module High Byte . . . . . . . . . . . . . . 270
C2 Register Definition 23.1. C2ADD: C2 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
C2 Register Definition 23.2. DEVICEID: C2 Device ID . . . . . . . . . . . . . . . . . . . . . . . . 271
C2 Register Definition 23.3. REVID: C2 Revision ID . . . . . . . . . . . . . . . . . . . . . . . . . 272
C2 Register Definition 23.4. FPCTL: C2 Flash Programming Control . . . . . . . . . . . . 272
C2 Register Definition 23.5. FPDAT: C2 Flash Programming Data . . . . . . . . . . . . . . 272
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 17
1. System Overview
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D devices are fully integrated mixed-signal System-on-a-Chip MCUs.
Highlighted features are listed below. Refer to Table 1.1 for specific product feature selection.
High-speed pipelined 8051-compatible microcontroller core (up to 48 MIPS)
In-system, full-speed, non-intrusive debug interface (on-chip)
Universal Serial Bus (USB) Function Controller with eight flexible endpoint pipes, integrated trans-
ceiver, and 1 kB FIFO RAM
Supply Voltage Regulator
True 10-bit 200 ksps differential / single-ended ADC with analog multiplexer
On-chip Voltage Reference and Temperature Sensor
On-chip Voltage Comparators (2)
Precision internal calibrated 12 MHz internal oscillator and 4x clock multiplier
Internal low-frequency oscillator for additional power savings
Up to 64 kB of on-chip Flash memory
Up to 4352 Bytes of on-chip RAM (256 + 4 kB)
External Memory Interface (EMIF) available on 48-pin versions.
SMBus/I2C, up to 2 UARTs, and Enhanced SPI serial interfaces implemented in hardware
Four general-purpose 16-bit timers
Programmable Counter/Timer Array (PCA) with five capture/compare modules and Watchdog Timer
function
On-chip Power-On Reset, VDD Monitor, and Missing Clock Detector
Up to 40 Port I/O (5 V tolerant)
With on-chip Power-On Reset, VDD monitor, Voltage Regulator, Watchdog Timer, and clock oscillator,
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D devices are truly stand-alone System-on-a-Chip solutions. The
Flash memory can be reprogrammed in-circuit, providing non-volatile data storage, and also allowing field
upgrades of the 8051 firmware. User software has complete control of all peripherals, and may individually
shut down any or all peripherals for power savings.
The on-chip Silicon Labs 2-Wire (C2) Development Interface allows non-intrusive (uses no on-chip
resources), full speed, in-circuit debugging using the production MCU installed in the final application. This
debug logic supports inspection and modification of memory and registers, setting breakpoints, single
stepping, run and halt commands. All analog and digital peripherals are fully functional while debugging
using C2. The two C2 interface pins can be shared with user functions, allowing in-system debugging with-
out occupying package pins.
Each device is specified for 2.7–5.25 V operation over the industrial temperature range (–40 to +85 °C).
For voltages above 3.6 V, the on-chip Voltage Regulator must be used. A minimum of 3.0 V is required for
USB communication. The Port I/O and RST pins are tolerant of input signals up to 5 V. C8051F340/1/2/3/
4/5/6/7/8/9/A/B/C/D devices are available in 48-pin TQFP, 32-pin LQFP, or 32-pin QFN packages. See
Table 1.1, “Product Selection Guide,” on page 18 for feature and package choices.
, ‘ SILIEIJN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
18 Rev. 1.5
Table 1.1. Product Selection Guide
Ordering Part Number
MIPS (Peak)
Flash Memory (Bytes)
RAM
Calibrated Internal Oscillator
Low Frequency Oscillator
USB with 1k Endpoint RAM
Supply Voltage Regulator
SMBus/I2C
Enhanced SPI
UARTs
Timers (16-bit)
Programmable Counter Array
Digital Port I/Os
External Memory Interface (EMIF)
10-bit 200 ksps ADC
Temperature Sensor
Voltage Reference
Analog Comparators
Package
C8051F340-GQ 48 64k 4352  24
40  2TQFP48
C8051F341-GQ 48 32k 2304  2440  2TQFP48
C8051F342-GQ 48 64k 4352  1425  2LQFP32
C8051F342-GM 48 64k 4352  14
25  2QFN32
C8051F343-GQ 48 32k 2304  1425  2LQFP32
C8051F343-GM 48 32k 2304  1425  2QFN32
C8051F344-GQ 25 64k 4352  24
40  2TQFP48
C8051F345-GQ 25 32k 2304  2440  2TQFP48
C8051F346-GQ 25 64k 4352  1425  2LQFP32
C8051F346-GM 25 64k 4352  14
25  2QFN32
C8051F347-GQ 25 32k 2304  1425  2LQFP32
C8051F347-GM 25 32k 2304  1425  2QFN32
C8051F348-GQ 25 32k 2304  24
40 — — — 2 TQFP48
C8051F349-GQ 25 32k 2304  1425 — — — 2 LQFP32
C8051F349-GM 25 32k 2304  1425 ———— 2 QFN32
C8051F34A-GQ 48 64k 4352  24
25  2LQFP32
C8051F34A-GM 48 64k 4352  2425  2QFN32
C8051F34B-GQ 48 32k 2304  2425  2LQFP32
C8051F34B-GM 48 32k 2304  24
25  2QFN32
C8051F34C-GQ 48 64k 4352  2440 — — — 2 TQFP48
C8051F34D-GQ 48 64k 4352  1425 — — — — 2 LQFP32
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 19
Figure 1.1. C8051F340/1/4/5 Block Diagram
Analog Peripherals
10-bit
200ksps
ADC
A
M
U
XTemp
Sensor
2 Comparators
+
-
VREFVDD
CP0
VDD
+
-
CP1
VREF
Debug / Programming
Hardware
Port 0
Drivers
P0.0
AIN0 - AIN19
Port I/O Configuration
Digital Peripherals
Priority
Crossbar
Decoder
Crossbar Control
Power-On
Reset
Power
Net
UART0
Timers 0, 1,
2, 3
PCA/WDT
SMBus
UART1
SPI
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6/XTAL1
P0.7/XTAL2
Port 1
Drivers
Port 2
Drivers
Port 3
Drivers
Port 4
Drivers
P1.0
P1.1
P1.2
P1.3
P1.4/CNVSTR
P1.5/VREF
P1.6
P1.7
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7
P4.0
P4.1
P4.2
P4.3
P4.4
P4.5
P4.6
P4.7
Supply
Monitor
System Clock Setup
External
Oscillator
Internal
Oscillator
XTAL1
XTAL2
Low Freq.
Oscillator
Clock
Multiplier
Clock
Recovery
USB Peripheral
Controller
1k Byte
RAM
Full / Low
Speed
Transceiver
External Memory
Interface
Control
Address
Data
P1
P2 / P3
P4
SFR
Bus
Voltage
Regulator
D+
D-
VBUS
VDD
VREG
GND
C2CK/RST
Reset
C2D
CIP-51 8051
Controller Core
64/32k Byte ISP FLASH
Program Memory
256 Byte RAM
4/2k Byte XRAM
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
20 Rev. 1.5
Figure 1.2. C8051F342/3/6/7 Block Diagram
Analog Peripherals
10-bit
200 ksps
ADC
A
M
U
XTemp
Sensor
2 Comparators
+
-
VREFVDD
CP0
VDD
+
-
CP1
VREF
Debug / Programming
Hardware
Port 0
Drivers
P0.0
AIN0 - AIN20
Port I/O Configuration
Digital Peripherals
Priority
Crossbar
Decoder
Crossbar Control
Power-On
Reset
Power
Net
UART0
Timers 0, 1,
2, 3
PCA/WDT
SMBus
SPI
P0.1
P0.2/XTAL1
P0.3/XTAL2
P0.4
P0.5
P0.6/CNVSTR
P0.7/VREF
Port 1
Drivers
Port 2
Drivers
Port 3
Drivers
P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
P3.0/C2D
Supply
Monitor
System Clock Setup
External
Oscillator
Internal
Oscillator
XTAL1
XTAL2
Low Freq.
Oscillator*
Clock
Multiplier
Clock
Recovery
USB Peripheral
Controller
1 kB RAM
Full / Low
Speed
Transceiver
SFR
Bus
Voltage
Regulator
D+
D-
VBUS
VDD
VREG
GND
C2CK/RST
Reset CIP-51 8051
Controller Core
64/32 kB ISP FLASH
Program Memory
256 Byte RAM
4/2 kB XRAM
C2D
*Low Frequency Oscillator option not available on C8051F346/7
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 21
Figure 1.3. C8051F348/C Block Diagram
Debug / Programming
Hardware
Port 0
Drivers
P0.0
Port I/O Configuration
Digital Peripherals
Priority
Crossbar
Decoder
Crossbar Control
Power-On
Reset
Power
Net
UART0
Timers 0, 1,
2, 3
PCA/WDT
SMBus
UART1
SPI
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6/XTAL1
P0.7/XTAL2
Port 1
Drivers
Port 2
Drivers
Port 3
Drivers
Port 4
Drivers
P1.0
P1.1
P1.2
P1.3
P1.4/CNVSTR
P1.5/VREF
P1.6
P1.7
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7
P4.0
P4.1
P4.2
P4.3
P4.4
P4.5
P4.6
P4.7
Supply
Monitor
System Clock Setup
External
Oscillator
Internal
Oscillator
XTAL1
XTAL2
Low Freq.
Oscillator
Clock
Multiplier
Clock
Recovery
USB Peripheral
Controller
1k Byte
RAM
Full / Low
Speed
Transceiver
External Memory
Interface
Control
Address
Data
P1
P2 / P3
P4
Voltage
Regulator
D+
D-
VBUS
VDD
VREG
GND
C2CK/RST
Reset
C2D
CIP-51 8051
Controller Core
64/32 kB ISP FLASH
Program Memory
256 Byte RAM
4/2 kB XRAM
Analog Peripherals
2 Comparators
+
-
CP0
+
-
CP1
SFR
Bus
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
22 Rev. 1.5
Figure 1.4. C8051F349/D Block Diagram
Debug / Programming
Hardware
Port 0
Drivers
P0.0
Port I/O Configuration
Digital Peripherals
Priority
Crossbar
Decoder
Crossbar Control
Power-On
Reset
Power
Net
UART0
Timers 0, 1,
2, 3
PCA/WDT
SMBus
SPI
P0.1
P0.2/XTAL1
P0.3/XTAL2
P0.4
P0.5
P0.6/CNVSTR
P0.7/VREF
Port 1
Drivers
Port 2
Drivers
Port 3
Drivers
P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
P3.0/C2D
Supply
Monitor
System Clock Setup
External
Oscillator
Internal
Oscillator
XTAL1
XTAL2
Low Freq.
Oscillator
Clock
Multiplier
Clock
Recovery
USB Peripheral
Controller
1 kB RAM
Full / Low
Speed
Transceiver
SFR
Bus
Voltage
Regulator
D+
D-
VBUS
VDD
VREG
GND
C2CK/RST
Reset CIP-51 8051
Controller Core
64/32 kB ISP FLASH
Program Memory
256 Byte RAM
4/2 kB XRAM
C2D
Analog Peripherals
2 Comparators
+
-
CP0
+
-
CP1
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 23
Figure 1.5. C8051F34A/B Block Diagram
Analog Peripherals
10-bit
200 ksps
ADC
A
M
U
XTemp
Sensor
2 Comparators
+
-
VREFVDD
CP0
VDD
+
-
CP1
VREF
Debug / Programming
Hardware
Port 0
Drivers
P0.0
AIN0 - AIN20
Port I/O Configuration
Digital Peripherals
Priority
Crossbar
Decoder
Crossbar Control
Power-On
Reset
Power
Net
UART0
Timers 0, 1,
2, 3
PCA/WDT
SMBus
SPI
P0.1
P0.2/XTAL1
P0.3/XTAL2
P0.4
P0.5
P0.6/CNVSTR
P0.7/VREF
Port 1
Drivers
Port 2
Drivers
Port 3
Drivers
P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
P3.0/C2D
Supply
Monitor
System Clock Setup
External
Oscillator
Internal
Oscillator
XTAL1
XTAL2
Low Freq.
Oscillator*
Clock
Multiplier
Clock
Recovery
USB Peripheral
Controller
1 kB RAM
Full / Low
Speed
Transceiver
SFR
Bus
Voltage
Regulator
D+
D-
VBUS
VDD
VREG
GND
C2CK/RST
Reset CIP-51 8051
Controller Core
64/32 kB ISP FLASH
Program Memory
256 Byte RAM
4/2 kB XRAM
C2D
UART1
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
24 Rev. 1.5
2. Absolute Maximum Ratings
Table 2.1. Absolute Maximum Ratings*
Parameter Conditions Min Typ Max Units
Ambient temperature under bias –55 125 °C
Storage Temperature –65 150 °C
Voltage on any Port I/O Pin or RST with
respect to GND –0.3 5.8 V
Voltage on VDD with respect to GND –0.3 4.2 V
Maximum Total current through VDD and
GND
500 mA
Maximum output current sunk by RST or any
Port pin 100 mA
*Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the devices at those or any other conditions
above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating
conditions for extended periods may affect device reliability.
|/\ |/\ , . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 25
3. Global DC Electrical Characteristics
Table 3.1. Global DC Electrical Characteristics
–40 to +85 °C, 25 MHz System Clock unless otherwise specified.
Parameter Conditions Min Typ Max Units
Digital Supply Voltage1VRST 3.3 3.6 V
Digital Supply RAM Data
Retention Voltage 1.5 V
SYSCLK (System Clock)2C8051F340/1/2/3/A/B/C/D
C8051F344/5/6/7/8/9 0
048
25 MHz
Specified Operating
Temperature Range –40 +85 °C
Digital Supply Current - CPU Active (Normal Mode, accessing Flash)
IDD3VDD = 3.3 V, SYSCLK = 48 MHz
VDD = 3.3 V, SYSCLK = 24 MHz
VDD = 3.3 V, SYSCLK = 1 MHz
VDD = 3.3 V, SYSCLK = 80 kHz
VDD = 3.6 V, SYSCLK = 48 MHz
VDD = 3.6 V, SYSCLK = 24 MHz
25.9
13.9
0.69
55
29.7
15.9
28.5
15.7
32.3
18
mA
mA
mA
µA
mA
mA
IDD Supply Sensitivity3,4 SYSCLK = 1 MHz,
relative to VDD = 3.3 V
SYSCLK = 24 MHz,
relative to VDD = 3.3 V
47
46
%/V
%/V
IDD Frequency Sensitivity3,5 VDD = 3.3 V, SYSCLK < 30 MHz,
T = 25 ºC
VDD = 3.3 V, SYSCLK > 30 MHz,
T = 25 ºC
VDD = 3.6 V, SYSCLK < 30 MHz,
T = 25 ºC
VDD = 3.6 V, SYSCLK > 30 MHz,
T = 25 ºC
0.69
0.44
0.80
0.50
mA/MHz
mA/MHz
mA/MHz
mA/MHz
Digital Supply Current - CPU Inactive (Idle Mode, not accessing Flash)
IDD3VDD = 3.3 V, SYSCLK = 48 MHz
VDD = 3.3 V, SYSCLK = 24 MHz
VDD = 3.3 V, SYSCLK = 1 MHz
VDD = 3.3 V, SYSCLK = 80 kHz
VDD = 3.6 V, SYSCLK = 48 MHz
VDD = 3.6 V, SYSCLK = 24 MHz
16.6
8.25
0.44
35
18.6
9.26
18.75
9.34
20.9
10.5
mA
mA
mA
µA
mA
mA
IDD Supply Sensitivity3,4 SYSCLK = 1 MHz,
relative to VDD = 3.3 V
SYSCLK = 24 MHz,
relative to VDD = 3.3 V
41
39
%/V
%/V
\A \A |/\ |/\ , . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
26 Rev. 1.5
Other electrical characteristics tables are found in the data sheet section corresponding to the associated
peripherals. For more information on electrical characteristics for a specific peripheral, refer to the page
indicated in Table 3.2.
IDD Frequency Sensitivity3,6 VDD = 3.3 V, SYSCLK < 1 MHz,
T = 25 ºC
VDD = 3.3 V, SYSCLK > 1 MHz,
T = 25 ºC
VDD = 3.6 V, SYSCLK < 1 MHz,
T = 25 ºC
VDD = 3.6 V, SYSCLK > 1 MHz,
T = 25 ºC
0.44
0.32
0.49
0.36
mA/MHz
mA/MHz
mA/MHz
mA/MHz
Digital Supply Current (Stop
Mode, shutdown) Oscillator not running,
VDD monitor disabled < 0.1 µA
Digital Supply Current for USB
Module (USB Active Mode) VDD = 3.3 V, USB Clock = 48 MHz
VDD = 3.6 V, USB Clock = 48 MHz
8.69
9.59
mA
mA
Digital Supply Current for USB
Module (USB Suspend Mode) Oscillator not running
VDD monitor disabled < 0.1 µA
Notes:
1. USB Requires 3.0 V Minimum Supply Voltage.
2. SYSCLK must be at least 32 kHz to enable debugging.
3. Based on device characterization of data; Not production tested.
4. Active and Inactive IDD at voltages and frequencies other than those specified can be calculated using the IDD
Supply Sensitivity. For example, if the VDD is 3.0 V instead of 3.3 V at 24 MHz: IDD = 13.9 mA typical at 3.3 V
and SYSCLK = 24 MHz. From this, IDD = 13.9 mA + 0.46 x (3.0 V – 3.3 V) = 13.76 mA at 3.0 V and SYSCLK
= 24 MHz.
5. IDD can be estimated for frequencies < 30 MHz by multiplying the frequency of interest by the frequency
sensitivity number for that range. When using these numbers to estimate IDD for > 30 MHz, the estimate should
be the current at 24 MHz (or 48 MHz) minus the difference in current indicated by the frequency sensitivity
number. For example: VDD = 3.3 V; SYSCLK = 35 MHz, IDD = 13.9 mA – (24 MHz – 35 MHz) x 0.44 mA/MHz =
18.74 mA.
6. Idle IDD can be estimated for frequencies < 1 MHz by multiplying the frequency of interest by the frequency
sensitivity number for that range. When using these numbers to estimate Idle IDD for > 1 MHz, the estimate
should be the current at 24 MHz (or 48 MHz) minus the difference in current indicated by the frequency
sensitivity number. For example: VDD = 3.3 V; SYSCLK = 5 MHz, Idle IDD = 8.25 mA – (24 MHz – 5 MHz) x
0.32 mA/MHz = 2.17 mA.
Table 3.1. Global DC Electrical Characteristics (Continued)
–40 to +85 °C, 25 MHz System Clock unless otherwise specified.
Parameter Conditions Min Typ Max Units
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 27
Table 3.2. Index to Electrical Characteristics Tables
Table Title Page No.
ADC0 Electrical Characteristics 56
Voltage Reference Electrical Characteristics 58
Comparator Electrical Characteristics 68
Voltage Regulator Electrical Specifications 69
Reset Electrical Characteristics 106
Flash Electrical Characteristics 109
AC Parameters for External Memory Interface 130
Oscillator Electrical Characteristics 141
Port I/O DC Electrical Characteristics 158
USB Transceiver Electrical Characteristics 187
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
28 Rev. 1.5
4. Pinout and Package Definitions
Table 4.1. Pin Definitions for the C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Name Pin Numbers Type Description
48-pin 32-pin
VDD 10 6Power In
Power
Out
2.7–3.6 V Power Supply Voltage Input.
3.3 V Voltage Regulator Output. See Section 8.
GND 7 3 Ground.
RST/
C2CK
13 9D I/O
D I/O
Device Reset. Open-drain output of internal POR or VDD
monitor. An external source can initiate a system reset by
driving this pin low for at least 15 µs. See Section 11.
Clock signal for the C2 Debug Interface.
C2D 14 D I/O Bi-directional data signal for the C2 Debug Interface.
P3.0 /
C2D
10 D I/O
D I/O
Port 3.0. See Section 15 for a complete description of Port
3.
Bi-directional data signal for the C2 Debug Interface.
REGIN 11 7Power In 5 V Regulator Input. This pin is the input to the on-chip volt-
age regulator.
VBUS 12 8D In VBUS Sense Input. This pin should be connected to the
VBUS signal of a USB network. A 5 V signal on this pin indi-
cates a USB network connection.
D+ 8 4 D I/O USB D+.
D- 9 5 D I/O USB D–.
P0.0 6 2 D I/O or
A In Port 0.0. See Section 15 for a complete description of Port
0.
P0.1 5 1 D I/O or
A In Port 0.1.
P0.2 432 D I/O or
A In Port 0.2.
P0.3 331 D I/O or
A In Port 0.3.
P0.4 230 D I/O or
A In Port 0.4.
P0.5 129 D I/O or
A In Port 0.5.
P0.6 48 28 D I/O or
A In Port 0.6.
P0.7 47 27 D I/O or
A In Port 0.7.
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 29
P1.0 46 26 D I/O or
A In Port 1.0. See Section 15 for a complete description of Port
1.
P1.1 45 25 D I/O or
A In Port 1.1.
P1.2 44 24 D I/O or
A In Port 1.2.
P1.3 43 23 D I/O or
A In Port 1.3.
P1.4 42 22 D I/O or
A In Port 1.4.
P1.5 41 21 D I/O or
A In Port 1.5.
P1.6 40 20 D I/O or
A In Port 1.6.
P1.7 39 19 D I/O or
A In Port 1.7.
P2.0 38 18 D I/O or
A In Port 2.0. See Section 15 for a complete description of Port
2.
P2.1 37 17 D I/O or
A In Port 2.1.
P2.2 36 16 D I/O or
A In Port 2.2.
P2.3 35 15 D I/O or
A In Port 2.3.
P2.4 34 14 D I/O or
A In Port 2.4.
P2.5 33 13 D I/O or
A In Port 2.5.
P2.6 32 12 D I/O or
A In Port 2.6.
P2.7 31 11 D I/O or
A In Port 2.7.
P3.0 30 D I/O or
A In Port 3.0. See Section 15 for a complete description of Port
3.
P3.1 29 D I/O or
A In Port 3.1.
P3.2 28 D I/O or
A In Port 3.2.
Table 4.1. Pin Definitions for the C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D (Continued)
Name Pin Numbers Type Description
48-pin 32-pin
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
30 Rev. 1.5
P3.3 27 D I/O or
A In Port 3.3.
P3.4 26 D I/O or
A In Port 3.4.
P3.5 25 D I/O or
A In Port 3.5.
P3.6 24 D I/O or
A In Port 3.6.
P3.7 23 D I/O or
A In Port 3.7.
P4.0 22 D I/O or
A In Port 4.0. See Section 15 for a complete description of Port
4.
P4.1 21 D I/O or
A In Port 4.1.
P4.2 20 D I/O or
A In Port 4.2.
P4.3 19 D I/O or
A In Port 4.3.
P4.4 18 D I/O or
A In Port 4.4.
P4.5 17 D I/O or
A In Port 4.5.
P4.6 16 D I/O or
A In Port 4.6.
P4.7 15 D I/O or
A In Port 4.7.
Table 4.1. Pin Definitions for the C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D (Continued)
Name Pin Numbers Type Description
48-pin 32-pin
(\i D. , . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 31
Figure 4.1. TQFP-48 Pinout Diagram (Top View)
1
2
3
4
5
6
7
8
9
10
11
12
36
35
34
33
32
31
30
29
28
27
26
25
48
47
46
45
44
43
42
41
40
39
38
37
VBUS
P2.2
P2.0
P1.7
P1.6
P1.2
P2.4
P2.3
P3.5
P3.4
P3.2
P3.1
P2.1
P0.6
P3.3
P0.7
P0.2
D-
REGIN
P0.3
P3.0
P1.4
P1.5
P0.5
P1.1
P1.0
P0.4
P1.3
13
14
15
16
17
18
19
20
21
22
23
24
P2.6
P2.5
C8051F340/1/4/5/8/C-GQ
Top View
GND
D+
P0.1
P0.0
VDD
P2.7
P3.6
P4.1
P4.0
P3.7
P4.2
P4.5
P4.4
P4.3
P4.6
RST / C2CK
C2D
P4.7
‘ 4W" HHHHHH‘HHHHHW I ‘ 97%;. iwj’ m HHHHHH‘HHHHHH, Lin fifi—Hji :— 7 . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
32 Rev. 1.5
Figure 4.2. TQFP-48 Package Diagram
Table 4.2. TQFP-48 Package Dimensions
Dimension Min Nom Max
A—1.20
A1 0.05 — 0.15
A2 0.95 1.00 1.05
b 0.170.220.27
c 0.09 — 0.20
D9.00 BSC
D1 7.00 BSC
e0.50 BSC
E9.00 BSC
E1 7.00 BSC
L 0.450.600.75
aaa 0.20
bbb 0.20
ccc 0.08
ddd 0.08
θ0° 3.5° 7°
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MS-026, variation ABC.
4. The recommended card reflow profile is per the JEDEC/IPC J-STD-020
specification for Small Body Components.
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 33
Figure 4.3. TQFP-48 Recommended PCB Land Pattern
Table 4.3. TQFP-48 PCB Land Pattern Dimensions
Dimension Min Max
C1 8.30 8.40
C2 8.30 8.40
E 0.50 BSC
X1 0.20 0.30
Y1 1.40 1.50
Notes:
General:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
Solder Mask Design:
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between
the solder mask and the metal pad is to be 60 µm minimum, all the way around
the pad.
Stencil Design:
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls
should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size should be 1:1 for all pads.
Card Assembly:
7. A No-Clean, Type-3 solder paste is recommended.
8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020
specification for Small Body Components.
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
34 Rev. 1.5
Figure 4.4. LQFP-32 Pinout Diagram (Top View)
1
VBUS
P1.2
P1.7
P1.4
P1.3
P1.5D+
D-
GND
P0.1
P0.0
P2.0
P2.1
2
3
4
5
6
7
8
24
23
22
21
20
19
18
17
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
P1.6
C8051F342/3/6/7/9/A/B/D-GQ
Top View
VDD
REGIN
RST / C2CK
P3.0 / C2D
P2.7
P2.6
P2.5
P2.4
P2.3
P2.2 P1.1
P1.0
P0.7
P0.6
P0.5
P0.4
P0.3
P0.2
ID— E} w EHHHHHHH HHHHHHHH \\\::::E::: a: , _V‘ SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 35
Figure 4.5. LQFP-32 Package Diagram
Table 4.4. LQFP-32 Package Dimensions
Dimension Min Nom Max
A—1.60
A1 0.05 — 0.15
A2 1.35 1.40 1.45
b 0.300.370.45
c 0.09 — 0.20
D9.00 BSC
D1 7.00 BSC
e0.80 BSC
E9.00 BSC
E1 7.00 BSC
L 0.450.600.75
aaa 0.20
bbb 0.20
ccc 0.10
ddd 0.20
θ0° 3.5° 7°
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MS-026, variation BBA.
4. The recommended card reflow profile is per the JEDEC/IPC J-STD-020
specification for Small Body Components.
\ w‘ w , HH NW JL, ,7 , . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
36 Rev. 1.5
Figure 4.6. LQFP-32 Recommended PCB Land Pattern
Table 4.5. LQFP-32 PCB Land Pattern Dimensions
Dimension Min Max
C1 8.40 8.50
C2 8.40 8.50
E 0.80 BSC
X1 0.40 0.50
Y1 1.25 1.35
Notes:
General:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
Solder Mask Design:
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between
the solder mask and the metal pad is to be 60 µm minimum, all the way around
the pad.
Stencil Design:
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls
should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size should be 1:1 for all pads.
Card Assembly:
7. A No-Clean, Type-3 solder paste is recommended.
8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020
specification for Small Body Components.
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 37
Figure 4.7. QFN-32 Pinout Diagram (Top View)
25 P1.1
17 P2.1
16P2.2
8VBUS
32
31
30
29
28
27
26
1
2
3
4
5
6
7
9
10
11
12
13
14
15
24
23
22
21
20
19
18
GND (optional)
C8051F342/3/6/7/9/A/B-GM
Top View
P1.0
P0.7
P0.6
P0.5
P0.4
P0.3
P0.2
P0.1
P0.0
GND
D+
D-
VDD
REGIN
RST / C2CK
P3.0 / C2D
P2.7
P2.6
P2.5
P2.4
P2.3
P2.0
P1.7
P1.6
P1.5
P1.4
P1.3
P1.2
m \ V , "mmmm" L1 ‘ Auk 4‘ l , w ‘E x: w ‘E m m u, mum W F'vu wme D ‘ , HM MM ‘7“ m w m mm m E‘ I [1 HM HM, MN” H mum , . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
38 Rev. 1.5
Figure 4.8. QFN-32 Package Drawing
Table 4.6. QFN-32 Package Dimensions
Dimension Min Nom Max
A0.80 0.9 1.00
A1 0.00 0.02 0.05
b0.18 0.25 0.30
D5.00 BSC
D2 3.20 3.30 3.40
e0.50 BSC
E5.00 BSC
E2 3.20 3.30 3.40
L0.30 0.40 0.50
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220,
variation VHHD except for custom features D2, E2, and L which are
toleranced per supplier designation.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020
specification for Small Body Components.
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 39
L1 0.00 0.15
aaa — 0.15
bbb — 0.10
ddd — 0.05
eee — 0.08
Table 4.6. QFN-32 Package Dimensions (Continued)
Dimension Min Nom Max
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220,
variation VHHD except for custom features D2, E2, and L which are
toleranced per supplier designation.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020
specification for Small Body Components.
7 J \HHHHHHW ‘ HHHH JLV HHHHHWH ‘7 m , . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
40 Rev. 1.5
Figure 4.9. QFN-32 Recommended PCB Land Pattern
Table 4.7. QFN-32 PCB Land Pattern Dimesions
Dimension Min Max Dimension Min Max
C1 4.80 4.90 X2 3.20 3.40
C2 4.80 4.90 Y1 0.75 0.85
E0.50 BSC Y2 3.20 3.40
X1 0.20 0.30
Notes:
General:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
Solder Mask Design:
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder
mask and the metal pad is to be 60μm minimum, all the way around the pad.
Stencil Design:
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used
to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pins.
7. A 3x3 array of 1.0 mm openings on a 1.2mm pitch should be used for the center pad to assure
the proper paste volume.
Card Assembly:
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small
Body Components.
SSSSSSSSSSS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 41
5. 10-Bit ADC (ADC0, C8051F340/1/2/3/4/5/6/7/A/B Only)
The ADC0 subsystem for the C8051F34x devices consists of two analog multiplexers (referred to collec-
tively as AMUX0), and a 200 ksps, 10-bit successive-approximation-register ADC with integrated
track-and-hold and programmable window detector. The AMUX0, data conversion modes, and window
detector are all configured under software control via the Special Function Registers shown in Figure 5.1.
ADC0 operates in both Single-ended and Differential modes, and may be configured to measure voltages
at port pins, the Temperature Sensor output, or VDD with respect to a port pin, VREF, or GND. The connec-
tion options for AMUX0 are detailed in SFR Definition 5.1 and SFR Definition 5.2. The ADC0 subsystem is
enabled only when the AD0EN bit in the ADC0 Control register (ADC0CN) is set to logic 1. The ADC0 sub-
system is in low power shutdown when this bit is logic 0.
Figure 5.1. ADC0 Functional Block Diagram
ADC0CF
AD0LJST
AD0SC0
AD0SC1
AD0SC2
AD0SC3
AD0SC4
10-Bit
SAR
ADC
REF
SYSCLK
ADC0H
32
ADC0CN
AD0CM0
AD0CM1
AD0CM2
AD0WINT
AD0BUSY
AD0INT
AD0TM
AD0EN
Timer 0 Overflow
Timer 2 Overflow
Timer 1 Overflow
Start
Conversion
000 AD0BUSY (W)
VDD
ADC0LTH
AD0WINT
001
010
011
100 CNVSTR Input
Window
Compare
Logic
GND
101 Timer 3 Overflow
ADC0LTL
ADC0GTH ADC0GTL
ADC0L
AMX0P
AMX0P4
AMX0P3
AMX0P2
AMX0P1
AMX0P0
AMX0N
AMX0N4
AMX0N3
AMX0N2
AMX0N1
AMX0N0
AIN+
AIN-
VREF
Positive
Input
(AIN+)
AMUX
VDD
Negative
Input
(AIN-)
AMUX
Temp
Sensor
Port I/O
Pins*
Port I/O
Pins*
* 21 Selections on 32-pin package
20 Selections on 48-pin package
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
42 Rev. 1.5
5.1. Analog Multiplexer
AMUX0 selects the positive and negative inputs to the ADC. The positive input (AIN+) can be connected to
individual Port pins, the on-chip temperature sensor, or the positive power supply (VDD). The negative
input (AIN-) can be connected to individual Port pins, VREF, or GND. When GND is selected as the neg-
ative input, ADC0 operates in Single-ended Mode; at all other times, ADC0 operates in Differential
Mode. The ADC0 input channels are selected in the AMX0P and AMX0N registers as described in SFR
Definition 5.1 and SFR Definition 5.2.
The conversion code format differs between Single-ended and Differential modes. The registers ADC0H
and ADC0L contain the high and low bytes of the output conversion code from the ADC at the completion
of each conversion. Data can be right-justified or left-justified, depending on the setting of the AD0LJST bit
(ADC0CN.0). When in Single-ended Mode, conversion codes are represented as 10-bit unsigned integers.
Inputs are measured from ‘0’ to VREF x 1023/1024. Example codes are shown below for both right-justi-
fied and left-justified data. Unused bits in the ADC0H and ADC0L registers are set to ‘0’.
When in Differential Mode, conversion codes are represented as 10-bit signed 2’s complement numbers.
Inputs are measured from –VREF to VREF x 511/512. Example codes are shown below for both right-jus-
tified and left-justified data. For right-justified data, the unused MSBs of ADC0H are a sign-extension of the
data word. For left-justified data, the unused LSBs in the ADC0L register are set to ‘0’.
Important Note About ADC0 Input Configuration: Port pins selected as ADC0 inputs should be config-
ured as analog inputs, and should be skipped by the Digital Crossbar. To configure a Port pin for analog
input, set to ‘0’ the corresponding bit in register PnMDIN (for n = 0,1,2,3). To force the Crossbar to skip a
Port pin, set to ‘1’ the corresponding bit in register PnSKIP (for n = 0,1,2). See Section “15. Port Input/
Output” on page 142 for more Port I/O configuration details.
Input Voltage
(Single-Ended) Right-Justified ADC0H:ADC0L
(AD0LJST = 0) Left-Justified ADC0H:ADC0L
(AD0LJST = 1)
VREF x 1023/1024 0x03FF 0xFFC0
VREF x 512/1024 0x0200 0x8000
VREF x 256/1024 0x0100 0x4000
0 0x0000 0x0000
Input Voltage
(Differential) Right-Justified ADC0H:ADC0L
(AD0LJST = 0) Left-Justified ADC0H:ADC0L
(AD0LJST = 1)
VREF x 511/512 0x01FF 0x7FC0
VREF x 256/512 0x0100 0x4000
0 0x0000 0x0000
–VREF x 256/512 0xFF00 0xC000
–VREF 0xFE00 0x8000
YEMP c Tempo : (VTEMF , Offset) / Gain :1 Gain (V/deg C ‘— Offset (V at 0 Celswus) , . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 43
5.2. Temperature Sensor
The temperature sensor transfer function is shown in Figure 5.2. The output voltage (VTEMP) is the positive
ADC input when the temperature sensor is selected by bits AMX0P4-0 in register AMX0P. Values for the
Offset and Slope parameters can be found in Table 5.1.
Figure 5.2. Temperature Sensor Transfer Function
The uncalibrated temperature sensor output is extremely linear and suitable for relative temperature mea-
surements (see Table 5.1 for linearity specifications). For absolute temperature measurements, offset and/
or gain calibration is recommended. Typically a 1-point (offset) calibration includes the following steps:
Step 1. Control/measure the ambient temperature (this temperature must be known).
Step 2. Power the device, and delay for a few seconds to allow for self-heating.
Step 3. Perform an ADC conversion with the temperature sensor selected as the positive input
and GND selected as the negative input.
Step 4. Calculate the offset characteristics, and store this value in non-volatile memory for use
with subsequent temperature sensor measurements.
Figure 5.3 shows the typical temperature sensor error assuming a 1-point calibration at 25 °C. Note that
parameters which affect ADC measurement, in particular the voltage reference value, will also
affect temperature measurement.
Temperature
Voltage
VTEMP = (Gain x TempC) + Offset
Offset (V at 0 Celsius)
Gain (V / deg C)
TempC = (VTEMP - Offset) / Gain
no ,20 no vu mm D a , . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
44 Rev. 1.5
Figure 5.3. Temperature Sensor Error with 1-Point Calibration (VREF = 2.40 V)
-40.00 -20.00 0.0
020.0
0
40.0
060.0
080.0
0
Temperature (degrees C)
Error (degrees C)
-5.00
-4.00
-3.00
-2.00
-1.00
0.0
0
1.0
0
2.0
0
3.0
0
4.0
0
5.0
0
-5.00
-4.00
-3.00
-2.00
-1.00
0.0
0
1.0
0
2.0
0
3.0
0
4.0
0
5.0
0
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 45
5.3. Modes of Operation
ADC0 has a maximum conversion speed of 200 ksps. The ADC0 conversion clock is a divided version of
the system clock, determined by the AD0SC bits in the ADC0CF register (system clock divided by
(AD0SC + 1) for 0 AD0SC 31).
5.3.1. Starting a Conversion
A conversion can be initiated in one of five ways, depending on the programmed states of the ADC0 Start
of Conversion Mode bits (AD0CM2–0) in register ADC0CN. Conversions may be initiated by one of the fol-
lowing:
1. Writing a ‘1’ to the AD0BUSY bit of register ADC0CN
2. A Timer 0 overflow (i.e., timed continuous conversions)
3. A Timer 2 overflow
4. A Timer 1 overflow
5. A rising edge on the CNVSTR input signal
6. A Timer 3 overflow
Writing a ‘1’ to AD0BUSY provides software control of ADC0 whereby conversions are performed
"on-demand". During conversion, the AD0BUSY bit is set to logic 1 and reset to logic 0 when the conver-
sion is complete. The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the ADC0
interrupt flag (AD0INT). Note: When polling for ADC conversion completions, the ADC0 interrupt flag
(AD0INT) should be used. Converted data is available in the ADC0 data registers, ADC0H:ADC0L, when
bit AD0INT is logic 1. Note that when Timer 2 or Timer 3 overflows are used as the conversion source, Low
Byte overflows are used if Timer 2/3 is in 8-bit mode; High byte overflows are used if Timer 2/3 is in 16-bit
mode. See Section “21. Timers on page 235 for timer configuration.
Important Note About Using CNVSTR: The CNVSTR input pin also functions as a Port pin. When the
CNVSTR input is used as the ADC0 conversion source, the associated Port pin should be skipped by the
Digital Crossbar. To configure the Crossbar to skip a pin, set the corresponding bit in the PnSKIP register
to ‘1’. See Section “15. Port Input/Output” on page 142 for details on Port I/O configuration.
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
46 Rev. 1.5
5.3.2. Tracking Modes
The AD0TM bit in register ADC0CN controls the ADC0 track-and-hold mode. In its default state, the ADC0
input is continuously tracked, except when a conversion is in progress. When the AD0TM bit is logic 1,
ADC0 operates in low-power track-and-hold mode. In this mode, each conversion is preceded by a track-
ing period of 3 SAR clocks (after the start-of-conversion signal). When the CNVSTR signal is used to initi-
ate conversions in low-power tracking mode, ADC0 tracks only when CNVSTR is low; conversion begins
on the rising edge of CNVSTR (see Figure 5.4). Tracking can also be disabled (shutdown) when the device
is in low power standby or sleep modes. Low-power track-and-hold mode is also useful when AMUX set-
tings are frequently changed, due to the settling time requirements described in Section “5.3.3. Settling
Time Requirements” on page 47.
Figure 5.4. 10-Bit ADC Track and Conversion Example Timing
Write '1' to AD0BUSY,
Timer 0, Timer 2,
Timer 1, Timer 3 Overflow
(AD0CM[2:0]=000, 001,010
011, 101)
AD0TM=1 Track Convert Low Power Mode
AD0TM=0 Track or
Convert Convert Track
Low Power
or Convert
SAR Clocks
123456789101112
123456789
SAR Clocks
B. ADC0 Timing for Internal Trigger Source
123456789
CNVSTR
(AD0CM[2:0]=100)
AD0TM=1
A. ADC0 Timing for External Trigger Source
SAR Clocks
Track or Convert Convert TrackAD0TM=0
Track Convert Low Power
Mode
Low Power
or Convert
10 11
13 14
10 11
H “J H , . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 47
5.3.3. Settling Time Requirements
When the ADC0 input configuration is changed (i.e., a different AMUX0 selection is made), a minimum
tracking time is required before an accurate conversion can be performed. This tracking time is determined
by the AMUX0 resistance, the ADC0 sampling capacitance, any external source resistance, and the accu-
racy required for the conversion. Note that in low-power tracking mode, three SAR clocks are used for
tracking at the start of every conversion. For most applications, these three SAR clocks will meet the mini-
mum tracking time requirements.
Figure 5.5 shows the equivalent ADC0 input circuits for both Differential and Single-ended modes. Notice
that the equivalent time constant for both input circuits is the same. The required ADC0 settling time for a
given settling accuracy (SA) may be approximated by Equation 5.1. When measuring the Temperature
Sensor output or VDD with respect to GND, RTOTAL reduces to RMUX. See Table 5.1 for ADC0 minimum
settling time requirements.
Equation 5.1. ADC0 Settling Time Requirements
Where:
SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB)
t is the required settling time in seconds
RTOTAL is the sum of the AMUX0 resistance and any external source resistance.
n is the ADC resolution in bits (10).
Figure 5.5. ADC0 Equivalent Input Circuits
t2n
SA
-------

RTOTALCSAMPLE
×ln=
R
MUX
= 5k
RC
Input
= R
MUX
* C
SAMPLE
R
MUX
= 5k
C
SAMPLE
= 5pF
C
SAMPLE
= 5pF
MUX
Select
MUX Select
Differential Mode
Px.x
Px.x
R
MUX
= 5k
C
SAMPLE
= 5pF
RC
Input
= R
MUX
* C
SAMPLE
MUX Select
Single-Ended Mode
Px.x
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
48 Rev. 1.5
SFR Definition 5.1. AMX0P: AMUX0 Positive Channel Select
Bits7–5: UNUSED. Read = 000b; Write = don’t care.
Bits4–0: AMX0P4–0: AMUX0 Positive Input Selection
R R R R/W R/W R/W R/W R/W Reset Value
- - - AMX0P4 AMX0P3 AMX0P2 AMX0P1 AMX0P0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0xBB
AMX0P4-0 ADC0 Positive Input
(32-pin Package) ADC0 Positive Input
(48-pin Package)
00000 P1.0 P2.0
00001 P1.1 P2.1
00010 P1.2 P2.2
00011 P1.3 P2.3
00100 P1.4 P2.5
00101 P1.5 P2.6
00110 P1.6 P3.0
00111 P1.7 P3.1
01000 P2.0 P3.4
01001 P2.1 P3.5
01010 P2.2 P3.7
01011 P2.3 P4.0
01100 P2.4 P4.3
01101 P2.5 P4.4
01110 P2.6 P4.5
01111 P2.7 P4.6
10000 P3.0 RESERVED
10001 P0.0 P0.3
10010 P0.1 P0.4
10011 P0.4 P1.1
10100 P0.5 P1.2
10101 - 11101 RESERVED RESERVED
11110 Temp Sensor Temp Sensor
11111 VDD VDD
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 49
SFR Definition 5.2. AMX0N: AMUX0 Negative Channel Select
Bits7–5: UNUSED. Read = 000b; Write = don’t care.
Bits4–0: AMX0N4–0: AMUX0 Negative Input Selection.
Note that when GND is selected as the Negative Input, ADC0 operates in Single-ended
mode. For all other Negative Input selections, ADC0 operates in Differential mode.
R R R R/W R/W R/W R/W R/W Reset Value
- - - AMX0N4 AMX0N3 AMX0N2 AMX0N1 AMX0N0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0xBA
AMX0N4-0 ADC0 Negative Input
(32-pin Package) ADC0 Negative Input
(48-pin Package)
00000 P1.0 P2.0
00001 P1.1 P2.1
00010 P1.2 P2.2
00011 P1.3 P2.3
00100 P1.4 P2.5
00101 P1.5 P2.6
00110 P1.6 P3.0
00111 P1.7 P3.1
01000 P2.0 P3.4
01001 P2.1 P3.5
01010 P2.2 P3.7
01011 P2.3 P4.0
01100 P2.4 P4.3
01101 P2.5 P4.4
01110 P2.6 P4.5
01111 P2.7 P4.6
10000 P3.0 RESERVED
10001 P0.0 P0.3
10010 P0.1 P0.4
10011 P0.4 P1.1
10100 P0.5 P1.2
10101 - 11101 RESERVED RESERVED
11110 VREF VREF
11111 GND (Single-Ended Mode) GND (Single-Ended Mode)
SA R , . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
50 Rev. 1.5
SFR Definition 5.3. ADC0CF: ADC0 Configuration
SFR Definition 5.4. ADC0H: ADC0 Data Word MSB
SFR Definition 5.5. ADC0L: ADC0 Data Word LSB
Bits7–3: AD0SC4–0: ADC0 SAR Conversion Clock Period Bits.
SAR Conversion clock is derived from system clock by the following equation, where
AD0SC refers to the 5-bit value held in bits AD0SC4-0. SAR Conversion clock requirements
are given in Table 5.1.
Bit2: AD0LJST: ADC0 Left Justify Select.
0: Data in ADC0H:ADC0L registers are right-justified.
1: Data in ADC0H:ADC0L registers are left-justified.
Bits1–0: UNUSED. Read = 00b; Write = don’t care.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
AD0SC4 AD0SC3 AD0SC2 AD0SC1 AD0SC0 AD0LJST - - 11111000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0xBC
AD0SC SYSCLK
CLKSAR
----------------------1=
Bits7–0: ADC0 Data Word High-Order Bits.
For AD0LJST = 0: Bits 7–2 are the sign extension of Bit1. Bits 1-0 are the upper 2 bits of the
10-bit ADC0 Data Word.
For AD0LJST = 1: Bits 7–0 are the most-significant bits of the 10-bit ADC0 Data Word.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0xBE
Bits7–0: ADC0 Data Word Low-Order Bits.
For AD0LJST = 0: Bits 7–0 are the lower 8 bits of the 10-bit Data Word.
For AD0LJST = 1: Bits 7–6 are the lower 2 bits of the 10-bit Data Word. Bits 5–0 will always
read ‘0’.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0xBD
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 51
SFR Definition 5.6. ADC0CN: ADC0 Control
Bit7: AD0EN: ADC0 Enable Bit.
0: ADC0 Disabled. ADC0 is in low-power shutdown.
1: ADC0 Enabled. ADC0 is active and ready for data conversions.
Bit6: AD0TM: ADC0 Track Mode Bit.
0: Normal Track Mode: When ADC0 is enabled, tracking is continuous unless a conversion
is in progress.
1: Low-power Track Mode: Tracking Defined by AD0CM2-0 bits (see below).
Bit5: AD0INT: ADC0 Conversion Complete Interrupt Flag.
0: ADC0 has not completed a data conversion since the last time AD0INT was cleared.
1: ADC0 has completed a data conversion.
Bit4: AD0BUSY: ADC0 Busy Bit.
Read:
0: ADC0 conversion is complete or a conversion is not currently in progress. AD0INT is set
to logic 1 on the falling edge of AD0BUSY.
1: ADC0 conversion is in progress.
Write:
0: No Effect.
1: Initiates ADC0 Conversion if AD0CM2-0 = 000b
Bit3: AD0WINT: ADC0 Window Compare Interrupt Flag.
0: ADC0 Window Comparison Data match has not occurred since this flag was last cleared.
1: ADC0 Window Comparison Data match has occurred.
Bits2–0: AD0CM2–0: ADC0 Start of Conversion Mode Select.
When AD0TM = 0:
000: ADC0 conversion initiated on every write of ‘1’ to AD0BUSY.
001: ADC0 conversion initiated on overflow of Timer 0.
010: ADC0 conversion initiated on overflow of Timer 2.
011: ADC0 conversion initiated on overflow of Timer 1.
100: ADC0 conversion initiated on rising edge of external CNVSTR.
101: ADC0 conversion initiated on overflow of Timer 3.
11x: Reserved.
When AD0TM = 1:
000: Tracking initiated on write of ‘1’ to AD0BUSY and lasts 3 SAR clocks, followed by conversion.
001: Tracking initiated on overflow of Timer 0 and lasts 3 SAR clocks, followed by conversion.
010: Tracking initiated on overflow of Timer 2 and lasts 3 SAR clocks, followed by conversion.
011: Tracking initiated on overflow of Timer 1 and lasts 3 SAR clocks, followed by conversion.
100: ADC0 tracks only when CNVSTR input is logic low; conversion starts on rising CNVSTR edge.
101: Tracking initiated on overflow of Timer 3 and lasts 3 SAR clocks, followed by conversion.
11x: Reserved.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
AD0EN AD0TM AD0INT AD0BUSY AD0WINT AD0CM2 AD0CM1 AD0CM0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
(bit addressable) 0xE8
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
52 Rev. 1.5
5.4. Programmable Window Detector
The ADC Programmable Window Detector continuously compares the ADC0 conversion results to
user-programmed limits, and notifies the system when a desired condition is detected. This is especially
effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster sys-
tem response times. The window detector interrupt flag (AD0WINT in register ADC0CN) can also be used
in polled mode. The ADC0 Greater-Than (ADC0GTH, ADC0GTL) and Less-Than (ADC0LTH, ADC0LTL)
registers hold the comparison values. The window detector flag can be programmed to indicate when mea-
sured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0
Less-Than and ADC0 Greater-Than registers.
The Window Detector registers must be written with the same format (left/right justified, signed/unsigned)
as that of the current ADC configuration (left/right justified, single-ended/differential).
SFR Definition 5.7. ADC0GTH: ADC0 Greater-Than Data High Byte
SFR Definition 5.8. ADC0GTL: ADC0 Greater-Than Data Low Byte
Bits7–0: High byte of ADC0 Greater-Than Data Word.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
11111111
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0xC4
Bits7–0: Low byte of ADC0 Greater-Than Data Word.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
11111111
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0xC3
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 53
SFR Definition 5.9. ADC0LTH: ADC0 Less-Than Data High Byte
SFR Definition 5.10. ADC0LTL: ADC0 Less-Than Data Low Byte
Bits7–0: High byte of ADC0 Less-Than Data Word.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0xC6
Bits7–0: Low byte of ADC0 Less-Than Data Word.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0xC5
SSSSSSSSSSS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
54 Rev. 1.5
5.4.1. Window Detector In Single-Ended Mode
Figure 5.6 shows two example window comparisons for right-justified, single-ended data, with
ADC0LTH:ADC0LTL = 0x0080 (128d) and ADC0GTH:ADC0GTL = 0x0040 (64d). In single-ended mode,
the input voltage can range from ‘0’ to VREF x (1023/1024) with respect to GND, and is represented by a
10-bit unsigned integer value. In the left example, an AD0WINT interrupt will be generated if the ADC0
conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and
ADC0LTH:ADC0LTL (if 0x0040 < ADC0H:ADC0L < 0x0080). In the right example, and AD0WINT interrupt
will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and
ADC0LT registers (if ADC0H:ADC0L < 0x0040 or ADC0H:ADC0L > 0x0080). Figure 5.7 shows an exam-
ple using left-justified data with equivalent ADC0GT and ADC0LT register settings.
Figure 5.6. ADC Window Compare Example: Right-Justified Single-Ended Data
Figure 5.7. ADC Window Compare Example: Left-Justified Single-Ended Data
0x03FF
0x0081
0x0080
0x007F
0x0041
0x0040
0x003F
0x0000
0
Input Voltage
(Px.x - GND)
VREF x (1023/1024)
VREF x (128/1024)
VREF x (64/1024)
AD0WINT=1
AD0WINT
not affected
AD0WINT
not affected
ADC0LTH:ADC0LTL
ADC0GTH:ADC0GTL
0x03FF
0x0081
0x0080
0x007F
0x0041
0x0040
0x003F
0x0000
0
Input Voltage
(Px.x - GND)
VREF x (1023/1024)
VREF x (128/1024)
VREF x (64/1024)
AD0WINT
not affected
AD0WINT=1
AD0WINT=1
ADC0H:ADC0L ADC0H:ADC0L
ADC0GTH:ADC0GTL
ADC0LTH:ADC0LTL
0xFFC0
0x2040
0x2000
0x1FC0
0x1040
0x1000
0x0FC0
0x0000
0
Input Voltage
(Px.x - GND)
VREF x (1023/1024)
VREF x (128/1024)
VREF x (64/1024)
AD0WINT=1
AD0WINT
not affected
AD0WINT
not affected
ADC0LTH:ADC0LTL
ADC0GTH:ADC0GTL
0xFFC0
0x2040
0x2000
0x1FC0
0x1040
0x1000
0x0FC0
0x0000
0
Input Voltage
(Px.x - GND)
VREF x (1023/1024)
VREF x (128/1024)
VREF x (64/1024)
AD0WINT
not affected
AD0WINT=1
AD0WINT=1
ADC0H:ADC0L ADC0H:ADC0L
ADC0LTH:ADC0LTL
ADC0GTH:ADC0GTL
H w H -H% ‘ H I: |:| \ >—> H w H -HP ‘ H >—> / , . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 55
5.4.2. Window Detector In Differential Mode
Figure 5.8 shows two example window comparisons for right-justified, differential data, with
ADC0LTH:ADC0LTL = 0x0040 (+64d) and ADC0GTH:ADC0GTH = 0xFFFF (-1d). In differential mode, the
measurable voltage between the input pins is between -VREF and VREF*(511/512). Output codes are rep-
resented as 10-bit 2’s complement signed integers. In the left example, an AD0WINT interrupt will be gen-
erated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL
and ADC0LTH:ADC0LTL (if 0xFFFF (-1d) < ADC0H:ADC0L < 0x0040 (64d)). In the right example, an
AD0WINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the
ADC0GT and ADC0LT registers (if ADC0H:ADC0L < 0xFFFF (-1d) or ADC0H:ADC0L > 0x0040 (+64d)).
Figure 5.9 shows an example using left-justified data with equivalent ADC0GT and ADC0LT register set-
tings.
Figure 5.8. ADC Window Compare Example: Right-Justified Differential Data
Figure 5.9. ADC Window Compare Example: Left-Justified Differential Data
0x01FF
0x0041
0x0040
0x003F
0x0000
0xFFFF
0xFFFE
0x0200
-VREF
Input Voltage
(Px.x - Px.x)
VREF x (511/512)
VREF x (64/512)
VREF x (-1/512)
0x01FF
0x0041
0x0040
0x003F
0x0000
0xFFFF
0xFFFE
0x0200
-VREF
Input Voltage
(Px.x - Px.x)
VREF x (511/512)
VREF x (64/512)
VREF x (-1/512)
AD0WINT=1
AD0WINT
not affected
AD0WINT
not affected
ADC0LTH:ADC0LTL
ADC0GTH:ADC0GTL
AD0WINT
not affected
AD0WINT=1
AD0WINT=1
ADC0H:ADC0LADC0H:ADC0L
ADC0GTH:ADC0GTL
ADC0LTH:ADC0LTL
0x7FC0
0x1040
0x1000
0x0FC0
0x0000
0xFFC0
0xFF80
0x8000
-VREF
Input Voltage
(Px.x - Px.y)
VREF x (511/512)
VREF x (64/512)
VREF x (-1/512)
0x7FC0
0x1040
0x1000
0x0FC0
0x0000
0xFFC0
0xFF80
0x8000
-VREF
Input Voltage
(Px.x - Px.x)
VREF x (511/512)
VREF x (64/512)
VREF x (-1/512)
AD0WINT=1
AD0WINT
not affected
AD0WINT
not affected
ADC0LTH:ADC0LTL
ADC0GTH:ADC0GTL
AD0WINT
not affected
ADC0GTH:ADC0GTL
AD0WINT=1
AD0WINT=1
ADC0H:ADC0LADC0H:ADC0L
ADC0LTH:ADC0LTL
, ‘ SILIEIJN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
56 Rev. 1.5
Table 5.1. ADC0 Electrical Characteristics
VDD = 3.0 V, VREF = 2.40 V, –40 to +85 °C unless otherwise specified
Parameter Conditions Min Typ Max Units
DC Accuracy
Resolution 10 bits
Integral Nonlinearity ±0.5 ±1 LSB
Differential Nonlinearity Guaranteed Monotonic ±0.5 ±1 LSB
Offset Error –15 0+15 LSB
Full Scale Error –15 –1 +15 LSB
Offset Temperature Coefficient 10 ppm/°C
Dynamic Performance (10 kHz sine-wave Single-ended input, 1 dB below Full Scale, 200 ksps)
Signal-to-Noise Plus Distortion 51 52.5 dB
Total Harmonic Distortion Up to the 5th harmonic –67 dB
Spurious-Free Dynamic Range 78 dB
Conversion Rate
SAR Conversion Clock 3MHz
Conversion Time in SAR Clocks 10 clocks
Track/Hold Acquisition Time 300 ns
Throughput Rate 200 ksps
Analog Inputs
ADC Input Voltage Range Single Ended (AIN+ – GND)
Differential (AIN+ – AIN–) 0
–VREF VREF
VREF V
V
Absolute Pin Voltage with respect
to GND Single Ended or Differential 0VDD V
Input Capacitance 5pF
Temperature Sensor
Linearity1±0.1 °C
Gain 2.86 mV/°C
Gain Error2±33.5 µV/ºC
Offset1(Temp = 0 °C) 776 mV
Offset Error2±8.51 mV
Power Specifications
Power Supply Current (VDD sup-
plied to ADC0) Operating Mode, 200 ksps 400 900 µA
Power Supply Rejection ±0.3 mV/V
Notes:
1. Includes ADC offset, gain, and linearity variations.
2. Represents one standard deviation from the mean.
SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 57
6. Voltage Reference (C8051F340/1/2/3/4/5/6/7/A/B Only)
The Voltage reference MUX on C8051F34x devices is configurable to use an externally connected voltage
reference, the on-chip reference voltage generator, or the power supply voltage VDD (see Figure 6.1). The
REFSL bit in the Reference Control register (REF0CN) selects the reference source. For the internal refer-
ence or an external source, REFSL should be set to ‘0’; For VDD as the reference source, REFSL should
be set to ‘1’.
The BIASE bit enables the internal ADC bias generator, which is used by the ADC and Internal Oscillator.
This enable is forced to logic 1 when either of the aforementioned peripherals is enabled. The ADC bias
generator may be enabled manually by writing a ‘1’ to the BIASE bit in register REF0CN; see SFR Defini-
tion 6.1 for REF0CN register details. The Reference bias generator (see Figure 6.1) is used by the Internal
Voltage Reference, Temperature Sensor, and Clock Multiplier. The Reference bias is automatically
enabled when any of the aforementioned peripherals are enabled. The electrical specifications for the volt-
age reference and bias circuits are given in Table 6.1.
Important Note About the VREF Pin: The VREF pin, when not using the on-chip voltage reference or an
external precision reference, can be configured as a GPIO Port pin. When using an external voltage refer-
ence or the on-chip reference, the VREF pin should be configured as analog pin and skipped by the Digital
Crossbar. To configure the VREF pin for analog mode, set the corresponding bit in the PnMDIN register to
‘0’. To configure the Crossbar to skip the VREF pin, set the corresponding bit in register PnSKIP to ‘1’.
Refer to Section “15. Port Input/Output” on page 142 for complete Port I/O configuration details.
The temperature sensor connects to the ADC0 positive input multiplexer (see Section “5.1. Analog Multi-
plexer” on page 42 for details). The TEMPE bit in register REF0CN enables/disables the temperature
sensor. While disabled, the temperature sensor defaults to a high impedance state and any ADC0 mea-
surements performed on the sensor result in meaningless data.
Figure 6.1. Voltage Reference Functional Block Diagram
VREF
(to ADC)
To Analog Mux
VDD
VREF
R1
VDD External
Voltage
Reference
Circuit
GND
Temp Sensor
EN
0
1
REF0CN
REFSL
TEMPE
BIASE
REFBE
REFBE
Internal
Reference
EN
Reference
Bias
EN
CLKMUL
Enable
TEMPE To Clock Multiplier,
Temp Sensor
ADC Bias To ADC,
Internal Oscillator
EN
IOSCEN
AD0EN
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
58 Rev. 1.5
SFR Definition 6.1. REF0CN: Reference Control
Table 6.1. Voltage Reference Electrical Characteristics
VDD = 3.0 V; –40 to +85 °C Unless Otherwise Specified
Parameter Conditions Min Typ Max Units
Internal Reference (REFBE = 1)
Output Voltage 25 °C ambient 2.38 2.44 2.50 V
VREF Short-Circuit Current 10 mA
VREF Temperature Coeffi-
cient 15 ppm/°C
Load Regulation Load = 0 to 200 µA to GND 1.5 ppm/µA
VREF Turn-on Time 1 4.7 µF tantalum, 0.1 µF ceramic
bypass 2ms
VREF Turn-on Time 2 0.1 µF ceramic bypass 20 µs
VREF Turn-on Time 3 no bypass cap 10 µs
Power Supply Rejection 140 ppm/V
External Reference (REFBE = 0)
Input Voltage Range 0 VDD V
Input Current Sample Rate = 200 ksps; VREF =
3.0 V 12 µA
Bias Generators
ADC Bias Generator BIASE = ‘1’ 100 µA
Reference Bias Generator 40 µA
Bits7–3: UNUSED. Read = 00000b; Write = don’t care.
Bit3: REFSL: Voltage Reference Select.
This bit selects the source for the internal voltage reference.
0: VREF pin used as voltage reference.
1: VDD used as voltage reference.
Bit2: TEMPE: Temperature Sensor Enable Bit.
0: Internal Temperature Sensor off.
1: Internal Temperature Sensor on.
Bit1: BIASE: Internal Analog Bias Generator Enable Bit.
0: Internal Bias Generator off.
1: Internal Bias Generator on.
Bit0: REFBE: Internal Reference Buffer Enable Bit.
0: Internal Reference Buffer disabled.
1: Internal Reference Buffer enabled. Internal voltage reference driven on the VREF pin.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
- - - - REFSL TEMPE BIASE REFBE 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0xD1
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 59
7. Comparators
C8051F34x devices include two on-chip programmable voltage Comparators. A block diagram of the com-
parators is shown in Figure 7.1, where “n” is the comparator number (0 or 1). The two Comparators oper-
ate identically with the following exceptions: (1) Their input selections differ, and (2) Comparator0 can be
used as a reset source. For input selection details, refer to SFR Definition 7.2 and SFR Definition 7.5.
Each Comparator offers programmable response time and hysteresis, an analog input multiplexer, and two
outputs that are optionally available at the Port pins: a synchronous “latched” output (CP0, CP1), or an
asynchronous “raw” output (CP0A, CP1A). The asynchronous signal is available even when the system
clock is not active. This allows the Comparators to operate and generate an output with the device in
STOP mode. When assigned to a Port pin, the Comparator outputs may be configured as open drain or
push-pull (see Section “15.2. Port I/O Initialization” on page 147). Comparator0 may also be used as a
reset source (see Section “11.5. Comparator0 Reset” on page 103).
The Comparator0 inputs are selected in the CPT0MX register (SFR Definition 7.2). The CMX0P1-CMX0P0
bits select the Comparator0 positive input; the CMX0N1-CMX0N0 bits select the Comparator0 negative
input. The Comparator1 inputs are selected in the CPT1MX register (SFR Definition 7.5). The CMX-
1P1-CMX1P0 bits select the Comparator1 positive input; the CMX1N1-CMX1N0 bits select the Compara-
tor1 negative input.
Important Note About Comparator Inputs: The Port pins selected as Comparator inputs should be con-
figured as analog inputs in their associated Port configuration register, and configured to be skipped by the
Crossbar (for details on Port configuration, see Section “15.3. General Purpose Port I/O” on page 150).
SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
60 Rev. 1.5
Figure 7.1. Comparator Functional Block Diagram
Comparator outputs can be polled in software, used as an interrupt source, and/or routed to a Port pin.
When routed to a Port pin, Comparator outputs are available asynchronous or synchronous to the system
clock; the asynchronous output is available even in STOP mode (with no system clock active). When dis-
abled, the Comparator output (if assigned to a Port I/O pin via the Crossbar) defaults to the logic low state,
and supply current falls to less than 100 nA. See Section “15.1. Priority Crossbar Decoder” on
page 144 for details on configuring Comparator outputs via the digital Crossbar. Comparator inputs can be
externally driven from –0.25 V to (VDD) + 0.25 V without damage or upset. The complete Comparator elec-
trical specifications are given in Table 7.1.
Comparator response time may be configured in software via the CPTnMD registers (see SFR Definition
7.3 and SFR Definition 7.6). Selecting a longer response time reduces the Comparator supply current. See
Table 7.1 for complete timing and supply current specifications.
VDD
CPTnCN
Reset Decision Tree
(Comprator 0 Only)
+
- Crossbar
Interrupt
Logic
Q
Q
SET
CLR
D
Q
Q
SET
CLR
D
(SYNCHRONIZER)
GND
CPn +
CPn -
CPnEN
CPnOUT
CPnRIF
CPnFIF
CPnHYP1
CPnHYP0
CPnHYN1
CPnHYN0
CPTnMD
CPnRIE
CPnFIE
CPnMD1
CPnMD0
CPn
CPnA
CPn
Rising-edge CPn
Falling-edge
CPn
Interrupt
CPnRIE
CPnFIE
CPTnMX
CMXnN1
CMXnN0
CMXnP1
CMXnP0
CMXnN2
CMXnP2
Port I/O connection options vary with
package (32-pin or 48-pin)
HL , . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 61
Figure 7.2. Comparator Hysteresis Plot
Comparator hysteresis is programmed using Bits3-0 in the Comparator Control Register CPTnCN (shown
in SFR Definition 7.1 and SFR Definition 7.4). The amount of negative hysteresis voltage is determined by
the settings of the CPnHYN bits. As shown in Figure 7.2, various levels of negative hysteresis can be
programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is
determined by the setting the CPnHYP bits.
Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Inter-
rupt enable and priority control, see Section “9.3. Interrupt Handler” on page 88.) The CPnFIF flag is set
to ‘1’ upon a Comparator falling-edge, and the CPnRIF flag is set to ‘1’ upon the Comparator rising-edge.
Once set, these bits remain set until cleared by software. The output state of the Comparator can be
obtained at any time by reading the CPnOUT bit. The Comparator is enabled by setting the CPnEN bit to
‘1’, and is disabled by clearing this bit to ‘0’.
Positive Hysteresis Voltage
(Programmed with CP0HYP Bits)
Negative Hysteresis Voltage
(Programmed by CP0HYN Bits)
VIN-
VIN+
INPUTS
CIRCUIT CONFIGURATION
+
_
CP0+
CP0- CP0
VIN+
VIN- OUT
V
OH
Positive Hysteresis
Disabled Maximum
Positive Hysteresis
Negative Hysteresis
Disabled Maximum
Negative Hysteresis
OUTPUT
V
OL
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
62 Rev. 1.5
SFR Definition 7.1. CPT0CN: Comparator0 Control
Bit7: CP0EN: Comparator0 Enable Bit.
0: Comparator0 Disabled.
1: Comparator0 Enabled.
Bit6: CP0OUT: Comparator0 Output State Flag.
0: Voltage on CP0+ < CP0–.
1: Voltage on CP0+ > CP0–.
Bit5: CP0RIF: Comparator0 Rising-Edge Flag.
0: No Comparator0 Rising Edge has occurred since this flag was last cleared.
1: Comparator0 Rising Edge has occurred.
Bit4: CP0FIF: Comparator0 Falling-Edge Flag.
0: No Comparator0 Falling-Edge has occurred since this flag was last cleared.
1: Comparator0 Falling-Edge Interrupt has occurred.
Bits3–2: CP0HYP1–0: Comparator0 Positive Hysteresis Control Bits.
00: Positive Hysteresis Disabled.
01: Positive Hysteresis = 5 mV.
10: Positive Hysteresis = 10 mV.
11: Positive Hysteresis = 20 mV.
Bits1–0: CP0HYN1–0: Comparator0 Negative Hysteresis Control Bits.
00: Negative Hysteresis Disabled.
01: Negative Hysteresis = 5 mV.
10: Negative Hysteresis = 10 mV.
11: Negative Hysteresis = 20 mV.
R/W R R/W R/W R/W R/W R/W R/W Reset Value
CP0EN CP0OUT CP0RIF CP0FIF CP0HYP1 CP0HYP0 CP0HYN1 CP0HYN0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0x9B
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 63
SFR Definition 7.2. CPT0MX: Comparator0 MUX Selection
Bit7: UNUSED. Read = 0b, Write = don’t care.
Bits6–4: CMX0N2–CMX0N0: Comparator0 Negative Input MUX Select.
These bits select which Port pin is used as the Comparator0 negative input.
Bit3: UNUSED. Read = 0b, Write = don’t care.
Bits2–0: CMX0P2–CMX0P0: Comparator0 Positive Input MUX Select.
These bits select which Port pin is used as the Comparator0 positive input.
Note that the port pins used by the comparator depend on the package type (32-pin or 48-pin).
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
- CMX0N2 CMX0N1 CMX0N0 - CMX0P2 CMX0P1 CMX0P0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0x9F
CMX0N1 CMX0N1 CMX0N0 Negative Input
(32-pin Package) Negative Input
(48-pin Package)
0 0 0 P1.1 P2.1
0 0 1 P1.5 P2.6
0 1 0 P2.1 P3.5
0 1 1 P2.5 P4.4
1 0 0 P0.1 P0.4
CMX0P1 CMX0P1 CMX0P0 Positive Input
(32-pin Package) Positive Input
(48-pin Package)
000 P1.0 P2.0
001 P1.4 P2.5
010 P2.0 P3.4
011 P2.4 P4.3
100 P0.0 P0.3
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
64 Rev. 1.5
SFR Definition 7.3. CPT0MD: Comparator0 Mode Selection
Bits7–6: UNUSED. Read = 00b. Write = don’t care.
Bit5: CP0RIE: Comparator0 Rising-Edge Interrupt Enable.
0: Comparator0 rising-edge interrupt disabled.
1: Comparator0 rising-edge interrupt enabled.
Bit4: CP0FIE: Comparator0 Falling-Edge Interrupt Enable.
0: Comparator0 falling-edge interrupt disabled.
1: Comparator0 falling-edge interrupt enabled.
Bits3–2: UNUSED. Read = 00b. Write = don’t care.
Bits1–0: CP0MD1–CP0MD0: Comparator0 Mode Select
These bits select the response time for Comparator0.
* See Table 7.1 for response time parameters.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
- - CP0RIE CP0FIE - - CP0MD1 CP0MD0 00000010
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0x9D
Mode CP0MD1 CP0MD0 CP0 Response Time*
0 0 0 Fastest Response
101
210
311 Lowest Power
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 65
SFR Definition 7.4. CPT1CN: Comparator1 Control
Bit7: CP1EN: Comparator1 Enable Bit.
0: Comparator1 Disabled.
1: Comparator1 Enabled.
Bit6: CP1OUT: Comparator1 Output State Flag.
0: Voltage on CP1+ < CP1–.
1: Voltage on CP1+ > CP1–.
Bit5: CP1RIF: Comparator1 Rising-Edge Flag.
0: No Comparator1 Rising Edge has occurred since this flag was last cleared.
1: Comparator1 Rising Edge has occurred.
Bit4: CP1FIF: Comparator1 Falling-Edge Flag.
0: No Comparator1 Falling-Edge has occurred since this flag was last cleared.
1: Comparator1 Falling-Edge has occurred.
Bits3–2: CP1HYP1–0: Comparator1 Positive Hysteresis Control Bits.
00: Positive Hysteresis Disabled.
01: Positive Hysteresis = 5 mV.
10: Positive Hysteresis = 10 mV.
11: Positive Hysteresis = 20 mV.
Bits1–0: CP1HYN1–0: Comparator1 Negative Hysteresis Control Bits.
00: Negative Hysteresis Disabled.
01: Negative Hysteresis = 5 mV.
10: Negative Hysteresis = 10 mV.
11: Negative Hysteresis = 20 mV.
R/W R R/W R/W R/W R/W R/W R/W Reset Value
CP1EN CP1OUT CP1RIF CP1FIF CP1HYP1 CP1HYP0 CP1HYN1 CP1HYN0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0x9A
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
66 Rev. 1.5
SFR Definition 7.5. CPT1MX: Comparator1 MUX Selection
Bit7: UNUSED. Read = 0b, Write = don’t care.
Bits6–4: CMX1N2–CMX1N0: Comparator1 Negative Input MUX Select.
These bits select which Port pin is used as the Comparator1 negative input.
Bit3: UNUSED. Read = 0b, Write = don’t care.
Bits2–0: CMX1P1–CMX1P0: Comparator1 Positive Input MUX Select.
These bits select which Port pin is used as the Comparator1 positive input.
Note that the port pins used by the comparator depend on the package type (32-pin or 48-pin).
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
- CMX1N2 CMX1N1 CMX1N0 - CMX1P2 CMX1P1 CMX1P0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0x9E
CMX1N2 CMX1N1 CMX1N0 Negative Input
(32-pin Package) Negative Input
(48-pin Package)
000 P1.3 P2.3
001 P1.7 P3.1
010 P2.3 P4.0
011 P2.7 P4.6
100 P0.5 P1.2
CMX1P2 CMX1P1 CMX1P0 Positive Input
(32-pin Package) Positive Input
(48-pin Package)
0 0 0 P1.2 P2.2
0 0 1 P1.6 P3.0
0 1 0 P2.2 P3.7
0 1 1 P2.6 P4.5
1 0 0 P0.4 P1.1
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 67
SFR Definition 7.6. CPT1MD: Comparator1 Mode Selection
Bits7–6: UNUSED. Read = 00b, Write = don’t care.
Bit5: CP1RIE: Comparator1 Rising-Edge Interrupt Enable.
0: Comparator1 rising-edge interrupt disabled.
1: Comparator1 rising-edge interrupt enabled.
Bit4: CP1FIE: Comparator1 Falling-Edge Interrupt Enable.
0: Comparator1 falling-edge interrupt disabled.
1: Comparator1 falling-edge interrupt enabled.
Bits1–0: CP1MD1–CP1MD0: Comparator1 Mode Select.
These bits select the response time for Comparator1.
* See Table 7.1 for response time parameters.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
- - CP1RIE CP1FIE - - CP1MD1 CP1MD0 00000010
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0x9C
Mode CP1MD1 CP1MD0 CP1 Response Time*
0 0 0 Fastest Response
101
210
311 Lowest Power
, ‘ SILIEIJN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
68 Rev. 1.5
Table 7.1. Comparator Electrical Characteristics
VDD = 3.0 V, –40 to +85 °C unless otherwise noted.
All specifications apply to both Comparator0 and Comparator1 unless otherwise noted.
Parameter Conditions Min Typ Max Units
Response Time:
Mode 0, Vcm* = 1.5 V
CP0+ – CP0– = 100 mV 100 ns
CP0+ – CP0– = –100 mV 250 ns
Response Time:
Mode 1, Vcm* = 1.5 V
CP0+ – CP0– = 100 mV 175 ns
CP0+ – CP0– = –100 mV 500 ns
Response Time:
Mode 2, Vcm* = 1.5 V
CP0+ – CP0– = 100 mV 320 ns
CP0+ – CP0– = –100 mV 1100 ns
Response Time:
Mode 3, Vcm* = 1.5 V
CP0+ – CP0– = 100 mV 1050 ns
CP0+ – CP0– = –100 mV 5200 ns
Common-Mode Rejection
Ratio 1.5 4mV/V
Positive Hysteresis 1 CP0HYP1–0 = 00 0 1 mV
Positive Hysteresis 2 CP0HYP1–0 = 01 2 5 10 mV
Positive Hysteresis 3 CP0HYP1–0 = 10 710 20 mV
Positive Hysteresis 4 CP0HYP1–0 = 11 15 20 30 mV
Negative Hysteresis 1 CP0HYN1–0 = 00 0 1 mV
Negative Hysteresis 2 CP0HYN1–0 = 01 2 5 10 mV
Negative Hysteresis 3 CP0HYN1–0 = 10 710 20 mV
Negative Hysteresis 4 CP0HYN1–0 = 11 15 20 30 mV
Inverting or Non-Inverting
Input Voltage Range –0.25 VDD + 0.25 V
Input Capacitance 3pF
Input Bias Current 0.001 nA
Input Offset Voltage –5 +5 mV
Power Supply
Power Supply Rejection 0.1 mV/V
Power-up Time 10 µs
Supply Current at DC
Mode 0 7.6 µA
Mode 1 3.2 µA
Mode 2 1.3 µA
Mode 3 0.4 µA
*Note: Vcm is the common-mode voltage on CP0+ and CP0–.
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 69
8. Voltage Regulator (REG0)
C8051F34x devices include a voltage regulator (REG0). When enabled, the REG0 output appears on the
VDD pin and can be used to power external devices. REG0 can be enabled/disabled by software using bit
REGEN in register REG0CN. See Table 8.1 for REG0 electrical characteristics.
Note that the VBUS signal must be connected to the VBUS pin when using the device in a USB network.
The VBUS signal should only be connected to the REGIN pin when operating the device as a bus-powered
function. REG0 configuration options are shown in Figure 8.1Figure 8.4.
8.1. Regulator Mode Selection
REG0 offers a low power mode intended for use when the device is in suspend mode. In this low power
mode, the REG0 output remains as specified; however the REG0 dynamic performance (response time) is
degraded. See Table 8.1 for normal and low power mode supply current specifications. The REG0 mode
selection is controlled via the REGMOD bit in register REG0CN.
8.2. VBUS Detection
When the USB Function Controller is used (see section Section “16. Universal Serial Bus Controller
(USB0)” on page 159), the VBUS signal should be connected to the VBUS pin. The VBSTAT bit (register
REG0CN) indicates the current logic level of the VBUS signal. If enabled, a VBUS interrupt will be gener-
ated when the VBUS signal matches the polarity selected by the VBPOL bit in register REG0CN. The
VBUS interrupt is level-sensitive, and has no associated interrupt pending flag. The VBUS interrupt will be
active as long as the VBUS signal matches the polarity selected by VBPOL. See Table 8.1 for VBUS input
parameters.
Important Note: When USB is selected as a reset source, a system reset will be generated when the
VBUS signal matches the polarity selected by the VBPOL bit. See Section “11. Reset Sources” on
page 100 for details on selecting USB as a reset source
Table 8.1. Voltage Regulator Electrical Specifications
–40 to +85 °C unless otherwise specified.
Parameter Conditions Min Typ Max Units
Input Voltage Range12.7 5.25 V
Output Voltage (VDD)2Output Current = 1 to 100 mA 3.0 3.3 3.6 V
Output Current2100 mA
VBUS Detection Input Low Voltage 1.0 V
VBUS Detection Input High Voltage 3.0 V
Bias Current Normal Mode (REGMOD = ‘0’)
Low Power Mode (REGMOD = ‘1’) 65
35 111
61 µA
Dropout Voltage (VDO)31mV/mA
Notes:
1. Input range specified for regulation. When an external regulator is used, should be tied to VDD.
2. Output current is total regulator output, including any current required by the C8051F34x.
3. The minimum input voltage is 2.70 V or VDD + VDO (max load), whichever is greater.
Voltage Regulator (REGO) Voltage Regulator (REGO) SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
70 Rev. 1.5
Figure 8.1. REG0 Configuration: USB Bus-Powered
Figure 8.2. REG0 Configuration: USB Self-Powered
Voltage Regulator (REG0)5 V In
3 V Out
VBUS Sense
REGIN
VBUS
From VBUS
To 3 V
Power Net Device
Power Net
VDD
Voltage Regulator (REG0)5 V In
3 V Out
VBUS Sense
REGIN
VBUS
To 3 V
Power Net Device
Power Net
VDD
From 5 V
Power Net
From VBUS
Voltage Regulator (REGO) Volkage Regulakor (REGD) SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 71
Figure 8.3. REG0 Configuration: USB Self-Powered, Regulator Disabled
Figure 8.4. REG0 Configuration: No USB Connection
Voltage Regulator (REG0)5 V In
3 V Out
VBUS Sense
REGIN
VBUS
From 3 V
Power Net Device
Power Net
VDD
From VBUS
Voltage Regulator (REG0)5 V In
3 V Out
VBUS Sense
REGIN
VBUS
To 3 V
Power Net Device
Power Net
VDD
From 5 V
Power Net
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
72 Rev. 1.5
SFR Definition 8.1. REG0CN: Voltage Regulator Control
Bit7: REGDIS: Voltage Regulator Disable.
0: Voltage Regulator Enabled.
1: Voltage Regulator Disabled.
Bit6: VBSTAT: VBUS Signal Status.
0: VBUS signal currently absent (device not attached to USB network).
1: VBUS signal currently present (device attached to USB network).
Bit5: VBPOL: VBUS Interrupt Polarity Select.
This bit selects the VBUS interrupt polarity.
0: VBUS interrupt active when VBUS is low.
1: VBUS interrupt active when VBUS is high.
Bit4: REGMOD: Voltage Regulator Mode Select.
This bit selects the Voltage Regulator mode. When REGMOD is set to ‘1’, the voltage regu-
lator operates in low power (suspend) mode.
0: USB0 Voltage Regulator in normal mode.
1: USB0 Voltage Regulator in low power mode.
Bits3–0: Reserved. Read = 0000b. Must Write = 0000b.
R/W R R/W R/W R/W R/W R/W R/W Reset Value
REGDIS VBSTAT VBPOL REGMOD Reserved Reserved Reserved Reserved 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0xC9
if if if , . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 73
9. CIP-51 Microcontroller
The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the
MCS-51™ instruction set; standard 803x/805x assemblers and compilers can be used to develop soft-
ware. The MCU family has a superset of all the peripherals included with a standard 8051. Included are
four 16-bit counter/timers (see description in Section 21), an enhanced full-duplex UART (see description
in Section 18), an Enhanced SPI (see description in Section 20), 256 bytes of internal RAM, 128 byte
Special Function Register (SFR) address space (Section 9.2.6), and 25 Port I/O (see description in Sec-
tion 15). The CIP-51 also includes on-chip debug hardware (see description in Section 23), and interfaces
directly with the analog and digital subsystems providing a complete data acquisition or control-system
solution in a single integrated circuit.
The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as
additional custom peripherals and functions to extend its capability (see Figure 9.1 for a block diagram).
The CIP-51 includes the following features:
Figure 9.1. CIP-51 Block Diagram
- Fully Compatible with MCS-51 Instruction
Set
- 0 to 48 MHz Clock Frequency
- 256 Bytes of Internal RAM
- 25 Port I/O
- Extended Interrupt Handler
- Reset Input
- Power Management Modes
- On-chip Debug Logic
- Program and Data Memory Security
DATA BUS
TMP1 TMP2
PRGM. ADDRESS REG.
PC INCREMENTER
ALU
PSW
DATA BUS
DATA BUS
MEMORY
INTERFACE
MEM_ADDRESS
D8
PIPELINE
BUFFER
DATA POINTER
INTERRUPT
INTERFACE
SYSTEM_IRQs
EMULATION_IRQ
MEM_CONTROL
CONTROL
LOGIC
A16
PROGRAM COUNTER (PC)
STOP
CLOCK
RESET
IDLE POWER CONTROL
REGISTER
DATA BUS
SFR
BUS
INTERFACE
SFR_ADDRESS
SFR_CONTROL
SFR_WRITE_DATA
SFR_READ_DATA
D8
D8
B REGISTER
D8
D8
ACCUMULATOR
D8
D8
D8
D8
D8
D8
D8
D8
MEM_WRITE_DATA
MEM_READ_DATA
D8
SRAM
ADDRESS
REGISTER
SRAM
(256 X 8)
D8
STACK POINTER
D8
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
74 Rev. 1.5
Performance
The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the stan-
dard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system
clock cycles to execute, and usually have a maximum system clock of 12 MHz. By contrast, the CIP-51
core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more
than eight system clock cycles.
With the CIP-51's maximum system clock at 25 MHz, it has a peak throughput of 25 MIPS. The CIP-51 has
a total of 109 instructions. The table below shows the total number of instructions that for execution time.
Programming and Debugging Support
In-system programming of the Flash program memory and communication with on-chip debug support
logic is accomplished via the Silicon Labs 2-Wire Development Interface (C2). Note that the re-program-
mable Flash can also be read and changed a single byte at a time by the application software using the
MOVC and MOVX instructions. This feature allows program memory to be used for non-volatile data stor-
age as well as updating program code under software control.
The on-chip Silicon Labs 2-Wire (C2) Development Interface allows non-intrusive (uses no on-chip
resources), full speed, in-circuit debugging using the production MCU installed in the final application. This
debug logic supports inspection and modification of memory and registers, setting breakpoints, single
stepping, run and halt commands. All analog and digital peripherals are fully functional while debugging
using C2. The two C2 interface pins can be shared with user functions, allowing in-system debugging with-
out occupying package pins. C2 details can be found in Section “23. C2 Interface” on page 271.
The CIP-51 is supported by development tools from Silicon Labs and third party vendors. Silicon Labs pro-
vides an integrated development environment (IDE) including editor, debugger, and programmer. The
IDE's debugger and programmer interface to the CIP-51 via the C2 interface to provide fast and efficient
in-system device programming and debugging. An 8051 assembler, linker and evaluation ‘C’ compiler are
included in the Development Kit. Many third party macro assemblers and C compilers are also available,
which can be used directly with the IDE.
9.1. Instruction Set
The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51™ instruc-
tion set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51
instructions are the binary and functional equivalent of their MCS-51™ counterparts, including opcodes,
addressing modes and effect on PSW flags. However, instruction timing is different than that of the stan-
dard 8051.
9.1.1. Instruction and CPU Timing
In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with
machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based
solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.
Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock
cycles as there are program bytes in the instruction. Conditional branch instructions take two fewer clock
cycles to complete when the branch is not taken as opposed to when the branch is taken. Table 9.1 is the
CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock
cycles for each instruction.
Clocks to Execute 1 2 2/4 33/5 4 5 4/6 6 8
Number of Instructions 26 50 510 752121
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 75
9.1.2. MOVX Instruction and Program Memory
In the CIP-51, the MOVX instruction serves three purposes: accessing on-chip XRAM, accessing off-chip
data XRAM (only on C8051F340/1/4/5/8 devices), and accessing on-chip program Flash memory. The
Flash access feature provides a mechanism for user software to update program code and use the pro-
gram memory space for non-volatile data storage (see Section “12. Flash Memory” on page 107). The
External Memory Interface (only on C8051F340/1/4/5/8 devices) provides a fast access interface to
off-chip data XRAM (or memory-mapped peripherals) via the MOVX instruction. Refer to Section
13. External Data Memory Interface and On-Chip XRAM” on page 114. for details.
Table 9.1. CIP-51 Instruction Set Summary
Mnemonic Description Bytes Clock
Cycles
Arithmetic Operations
ADD A, Rn Add register to A 1 1
ADD A, direct Add direct byte to A 2 2
ADD A, @Ri Add indirect RAM to A 1 2
ADD A, #data Add immediate to A 2 2
ADDC A, Rn Add register to A with carry 1 1
ADDC A, direct Add direct byte to A with carry 2 2
ADDC A, @Ri Add indirect RAM to A with carry 1 2
ADDC A, #data Add immediate to A with carry 2 2
SUBB A, Rn Subtract register from A with borrow 1 1
SUBB A, direct Subtract direct byte from A with borrow 2 2
SUBB A, @Ri Subtract indirect RAM from A with borrow 1 2
SUBB A, #data Subtract immediate from A with borrow 2 2
INC A Increment A 1 1
INC Rn Increment register 1 1
INC direct Increment direct byte 2 2
INC @Ri Increment indirect RAM 1 2
DEC A Decrement A 1 1
DEC Rn Decrement register 1 1
DEC direct Decrement direct byte 2 2
DEC @Ri Decrement indirect RAM 1 2
INC DPTR Increment Data Pointer 1 1
MUL AB Multiply A and B 1 4
DIV AB Divide A by B 1 8
DA A Decimal adjust A 1 1
Logical Operations
ANL A, Rn AND Register to A 1 1
ANL A, direct AND direct byte to A 2 2
ANL A, @Ri AND indirect RAM to A 1 2
ANL A, #data AND immediate to A 2 2
ANL direct, A AND A to direct byte 2 2
ANL direct, #data AND immediate to direct byte 3 3
ORL A, Rn OR Register to A 1 1
ORL A, direct OR direct byte to A 2 2
ORL A, @Ri OR indirect RAM to A 12
, ‘ SILIEIJN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
76 Rev. 1.5
ORL A, #data OR immediate to A 2 2
ORL direct, A OR A to direct byte 2 2
ORL direct, #data OR immediate to direct byte 3 3
XRL A, Rn Exclusive-OR Register to A 1 1
XRL A, direct Exclusive-OR direct byte to A 2 2
XRL A, @Ri Exclusive-OR indirect RAM to A 1 2
XRL A, #data Exclusive-OR immediate to A 2 2
XRL direct, A Exclusive-OR A to direct byte 2 2
XRL direct, #data Exclusive-OR immediate to direct byte 3 3
CLR A Clear A 1 1
CPL A Complement A 1 1
RL A Rotate A left 1 1
RLC A Rotate A left through Carry 1 1
RR A Rotate A right 1 1
RRC A Rotate A right through Carry 1 1
SWAP A Swap nibbles of A 1 1
Data Transfer
MOV A, Rn Move Register to A 1 1
MOV A, direct Move direct byte to A 2 2
MOV A, @Ri Move indirect RAM to A 1 2
MOV A, #data Move immediate to A 2 2
MOV Rn, A Move A to Register 1 1
MOV Rn, direct Move direct byte to Register 2 2
MOV Rn, #data Move immediate to Register 2 2
MOV direct, A Move A to direct byte 2 2
MOV direct, Rn Move Register to direct byte 2 2
MOV direct, direct Move direct byte to direct byte 3 3
MOV direct, @Ri Move indirect RAM to direct byte 2 2
MOV direct, #data Move immediate to direct byte 3 3
MOV @Ri, A Move A to indirect RAM 1 2
MOV @Ri, direct Move direct byte to indirect RAM 2 2
MOV @Ri, #data Move immediate to indirect RAM 2 2
MOV DPTR, #data16 Load DPTR with 16-bit constant 3 3
MOVC A, @A+DPTR Move code byte relative DPTR to A 1 3
MOVC A, @A+PC Move code byte relative PC to A 1 3
MOVX A, @Ri Move external data (8-bit address) to A 1 3
MOVX @Ri, A Move A to external data (8-bit address) 1 3
MOVX A, @DPTR Move external data (16-bit address) to A 1 3
MOVX @DPTR, A Move A to external data (16-bit address) 1 3
PUSH direct Push direct byte onto stack 2 2
POP direct Pop direct byte from stack 2 2
XCH A, Rn Exchange Register with A 1 1
XCH A, direct Exchange direct byte with A 2 2
XCH A, @Ri Exchange indirect RAM with A 1 2
XCHD A, @Ri Exchange low nibble of indirect RAM with A 1 2
Table 9.1. CIP-51 Instruction Set Summary (Continued)
Mnemonic Description Bytes Clock
Cycles
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 77
Boolean Manipulation
CLR C Clear Carry 1 1
CLR bit Clear direct bit 2 2
SETB C Set Carry 1 1
SETB bit Set direct bit 2 2
CPL C Complement Carry 1 1
CPL bit Complement direct bit 2 2
ANL C, bit AND direct bit to Carry 2 2
ANL C, /bit AND complement of direct bit to Carry 2 2
ORL C, bit OR direct bit to carry 2 2
ORL C, /bit OR complement of direct bit to Carry 2 2
MOV C, bit Move direct bit to Carry 2 2
MOV bit, C Move Carry to direct bit 2 2
JC rel Jump if Carry is set 22/4
JNC rel Jump if Carry is not set 22/4
JB bit, rel Jump if direct bit is set 33/5
JNB bit, rel Jump if direct bit is not set 33/5
JBC bit, rel Jump if direct bit is set and clear bit 33/5
Program Branching
ACALL addr11 Absolute subroutine call 2 4
LCALL addr16 Long subroutine call 3 5
RET Return from subroutine 1 6
RETI Return from interrupt 1 6
AJMP addr11 Absolute jump 2 4
LJMP addr16 Long jump 3 5
SJMP rel Short jump (relative address) 2 4
JMP @A+DPTR Jump indirect relative to DPTR 1 4
JZ rel Jump if A equals zero 22/4
JNZ rel Jump if A does not equal zero 22/4
CJNE A, direct, rel Compare direct byte to A and jump if not equal 33/5
CJNE A, #data, rel Compare immediate to A and jump if not equal 33/5
CJNE Rn, #data, rel Compare immediate to Register and jump if not equal 33/5
CJNE @Ri, #data, rel Compare immediate to indirect and jump if not equal 34/6
DJNZ Rn, rel Decrement Register and jump if not zero 22/4
DJNZ direct, rel Decrement direct byte and jump if not zero 33/5
NOP No operation 1 1
Table 9.1. CIP-51 Instruction Set Summary (Continued)
Mnemonic Description Bytes Clock
Cycles
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
78 Rev. 1.5
Notes on Registers, Operands and Addressing Modes:
Rn - Register R0-R7 of the currently selected register bank.
@Ri - Data RAM location addressed indirectly through R0 or R1.
rel - 8-bit, signed (two’s complement) offset relative to the first byte of the following instruction. Used by
SJMP and all conditional jumps.
direct - 8-bit internal data location’s address. This could be a direct-access Data RAM location
(0x00-0x7F) or an SFR (0x80-0xFF).
#data - 8-bit constant
#data16 - 16-bit constant
bit - Direct-accessed bit in Data RAM or SFR
addr11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the same
2K-byte page of program memory as the first byte of the following instruction.
addr16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within
the 8K-byte program memory space.
There is one unused opcode (0xA5) that performs the same function as NOP.
All mnemonics copyrighted © Intel Corporation 1980.
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 79
9.2. Memory Organization
The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are
two separate memory spaces: program memory and data memory. Program and data memory share the
same address space but are accessed via different instruction types. The CIP-51 memory organization is
shown in Figure 9.2 and Figure 9.3.
Figure 9.2. On-Chip Memory Map for 64 kB Devices
PROGRAM/DATA MEMORY
(FLASH)
(Direct and Indirect
Addressing)
0x00
0x7F
Upper 128 RAM
(Indirect Addressing
Only)
0x80
0xFF Special Function
Register's
(Direct Addressing Only)
DATA MEMORY (RAM)
General Purpose
Registers
0x1F
0x20
0x2F Bit Addressable
Lower 128 RAM
(Direct and Indirect
Addressing)
0x30
INTERNAL DATA ADDRESS SPACE
EXTERNAL DATA ADDRESS SPACE
XRAM - 4096 Bytes
(Accessable using MOVX
instruction)
0x0000
0x0FFF
Off-Chip XRAM
(Available only on devices
with EMIF)
0x0400
0xFFFF
FLASH
(In-System
Programmable in 512
Byte Sectors)
0x0000
RESERVED
0xFC00
0xFBFF
USB FIFOs
1024 Bytes
0x07FF
0x1000
0xFFFF
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
80 Rev. 1.5
Figure 9.3. On-Chip Memory Map for 32 kB Devices
9.2.1. Program Memory
The CIP-51 core has a 64k-byte program memory space. The C8051F34x implements 64k or 32k bytes of
this program memory space as in-system, re-programmable Flash memory. Note that on the 64k versions
of the C8051F34x, addresses above 0xFBFF are reserved.
Program memory is normally assumed to be read-only. However, the CIP-51 can write to program memory
by setting the Program Store Write Enable bit (PSCTL.0) and using the MOVX instruction. This feature pro-
vides a mechanism for the CIP-51 to update program code and use the program memory space for
non-volatile data storage. Refer to Section “12. Flash Memory” on page 107 for further details.
PROGRAM/DATA MEMORY
(FLASH)
(Direct and Indirect
Addressing)
0x00
0x7F
Upper 128 RAM
(Indirect Addressing
Only)
0x80
0xFF Special Function
Register's
(Direct Addressing Only)
DATA MEMORY (RAM)
General Purpose
Registers
0x1F
0x20
0x2F Bit Addressable
Lower 128 RAM
(Direct and Indirect
Addressing)
0x30
INTERNAL DATA ADDRESS SPACE
EXTERNAL DATA ADDRESS SPACE
XRAM - 2048 Bytes
(Accessable using MOVX
instruction)
0x0000
0x07FF
Off-Chip XRAM
(Available only on devices
with EMIF)
0x0400
0xFFFF
FLASH
(In-System
Programmable in 512
Byte Sectors)
0x0000
0x7FFF
USB FIFOs
1024 Bytes
0x07FF
0x0800
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 81
9.2.2. Data Memory
The CIP-51 includes 256 of internal RAM mapped into the data memory space from 0x00 through 0xFF.
The lower 128 bytes of data memory are used for general purpose registers and scratch pad memory.
Either direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations
0x00 through 0x1F are addressable as four banks of general purpose registers, each bank consisting of
eight byte-wide registers. The next 16 bytes, locations 0x20 through 0x2F, may either be addressed as
bytes or as 128 bit locations accessible with the direct addressing mode.
The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the
same address space as the Special Function Registers (SFR) but is physically separate from the SFR
space. The addressing mode used by an instruction when accessing locations above 0x7F determines
whether the CPU accesses the upper 128 bytes of data memory space or the SFRs. Instructions that use
direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F access the
upper 128 bytes of data memory. Figure 9.2 illustrates the data memory organization of the CIP-51.
9.2.3. General Purpose Registers
The lower 32 bytes of data memory, locations 0x00 through 0x1F, may be addressed as four banks of gen-
eral-purpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only
one of these banks may be enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1
(PSW.4), select the active register bank (see description of the PSW in SFR Definition 9.4). This allows
fast context switching when entering subroutines and interrupt service routines. Indirect addressing modes
use registers R0 and R1 as index registers.
9.2.4. Bit Addressable Locations
In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20
through 0x2F are also accessible as 128 individually addressable bits. Each bit has a bit address from
0x00 to 0x7F. Bit 0 of the byte at 0x20 has bit address 0x00 while bit7 of the byte at 0x20 has bit address
0x07. Bit 7 of the byte at 0x2F has bit address 0x7F. A bit access is distinguished from a full byte access by
the type of instruction used (bit source or destination operands as opposed to a byte source or destina-
tion).
The MCS-51™ assembly language allows an alternate notation for bit addressing of the form XX.B where
XX is the byte address and B is the bit position within the byte. For example, the instruction:
MOV C, 22h.3
moves the Boolean value at 0x13 (bit 3 of the byte at location 0x22) into the Carry flag.
9.2.5. Stack
A programmer's stack can be located anywhere in the 256-byte data memory. The stack area is desig-
nated using the Stack Pointer (SP, 0x81) SFR. The SP will point to the last location used. The next value
pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to
location 0x07. Therefore, the first value pushed on the stack is placed at location 0x08, which is also the
first register (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be
initialized to a location in the data memory not being used for data storage. The stack depth can extend up
to 256 bytes.
, ‘ SILIEIJN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
82 Rev. 1.5
9.2.6. Special Function Registers
The direct-access data memory locations from 0x80 to 0xFF constitute the special function registers
(SFRs). The SFRs provide control and data exchange with the CIP-51's resources and peripherals. The
CIP-51 duplicates the SFRs found in a typical 8051 implementation as well as implementing additional
SFRs used to configure and access the sub-systems unique to the MCU. This allows the addition of new
functionality while retaining compatibility with the MCS-51™ instruction set. Table 9.2 lists the SFRs imple-
mented in the CIP-51 System Controller.
The SFR registers are accessed anytime the direct addressing mode is used to access memory locations
from 0x80 to 0xFF. SFRs with addresses ending in 0x0 or 0x8 (e.g. P0, TCON, SCON0, IE, etc.) are
bit-addressable as well as byte-addressable. All other SFRs are byte-addressable only. Unoccupied
addresses in the SFR space are reserved for future use. Accessing these areas will have an indeterminate
effect and should be avoided. Refer to the corresponding pages of the datasheet, as indicated in Table 9.3,
for a detailed description of each register.
Table 9.2. Special Function Register (SFR) Memory Map
F8 SPI0CN PCA0L PCA0H PCA0CPL0 PCA0CPH0 PCA0CPL4 PCA0CPH4 VDM0CN
F0 B P0MDIN P1MDIN P2MDIN P3MDIN P4MDIN EIP1 EIP2
E8 ADC0CN PCA0CPL1 PCA0CPH1 PCA0CPL2 PCA0CPH2 PCA0CPL3 PCA0CPH3 RSTSRC
E0 ACC XBR0 XBR1 XBR2 IT01CF SMOD1 EIE1 EIE2
D8 PCA0CN PCA0MD PCA0CPM0 PCA0CPM1 PCA0CPM2 PCA0CPM3 PCA0CPM4 P3SKIP
D0 PSW REF0CN SCON1 SBUF1 P0SKIP P1SKIP P2SKIP USB0XCN
C8 TMR2CN REG0CN TMR2RLL TMR2RLH TMR2L TMR2H - -
C0 SMB0CN SMB0CF SMB0DAT ADC0GTL ADC0GTH ADC0LTL ADC0LTH P4
B8 IP CLKMUL AMX0N AMX0P ADC0CF ADC0L ADC0H -
B0 P3 OSCXCN OSCICN OSCICL SBRLL1 SBRLH1 FLSCL FLKEY
A8 IE CLKSEL EMI0CN - SBCON1 - P4MDOUT PFE0CN
A0 P2 SPI0CFG SPI0CKR SPI0DAT P0MDOUT P1MDOUT P2MDOUT P3MDOUT
98 SCON0 SBUF0 CPT1CN CPT0CN CPT1MD CPT0MD CPT1MX CPT0MX
90 P1 TMR3CN TMR3RLL TMR3RLH TMR3L TMR3H USB0ADR USB0DAT
88 TCON TMOD TL0 TL1 TH0 TH1 CKCON PSCTL
80 P0 SP DPL DPH EMI0TC EMI0CF OSCLCN PCON
0(8) 1(9) 2(A) 3(B) 4(C) 5(D) 6(E) 7(F)
(bit addressable)
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 83
Table 9.3. Special Function Registers
SFRs are listed in alphabetical order. All undefined SFR locations are reserved.
Register Address Description Page
ACC 0xE0 Accumulator 87
ADC0CF 0xBC ADC0 Configuration 50
ADC0CN 0xE8 ADC0 Control 51
ADC0GTH 0xC4 ADC0 Greater-Than Compare High 52
ADC0GTL 0xC3 ADC0 Greater-Than Compare Low 52
ADC0H 0xBE ADC0 High 50
ADC0L 0xBD ADC0 Low 50
ADC0LTH 0xC6 ADC0 Less-Than Compare Word High 53
ADC0LTL 0xC5 ADC0 Less-Than Compare Word Low 53
AMX0N 0xBA AMUX0 Negative Channel Select 49
AMX0P 0xBB AMUX0 Positive Channel Select 48
B0xF0 B Register 88
CKCON 0x8E Clock Control 241
CLKMUL 0xB9 Clock Multiplier 138
CLKSEL 0xA9 Clock Select 140
CPT0CN 0x9B Comparator0 Control 62
CPT0MD 0x9D Comparator0 Mode Selection 64
CPT0MX 0x9F Comparator0 MUX Selection 63
CPT1CN 0x9A Comparator1 Control 65
CPT1MD 0x9C Comparator1 Mode Selection 67
CPT1MX 0x9E Comparator1 MUX Selection 66
DPH 0x83 Data Pointer High 86
DPL 0x82 Data Pointer Low 86
EIE1 0xE6 Extended Interrupt Enable 1 93
EIE2 0xE7 Extended Interrupt Enable 2 95
EIP1 0xF6 Extended Interrupt Priority 1 94
EIP2 0xF7 Extended Interrupt Priority 2 95
EMI0CN 0xAA External Memory Interface Control 117
EMI0CF 0x85 External Memory Interface Configuration 118
EMI0TC 0x84 External Memory Interface Timing 123
FLKEY 0xB7 Flash Lock and Key 112
FLSCL 0xB6 Flash Scale 113
IE 0xA8 Interrupt Enable 91
IP 0xB8 Interrupt Priority 92
IT01CF 0xE4 INT0/INT1 Configuration 96
OSCICL 0xB3 Internal Oscillator Calibration 133
OSCICN 0xB2 Internal Oscillator Control 132
OSCLCN 0x86 Internal Low-Frequency Oscillator Control 134
OSCXCN 0xB1 External Oscillator Control 137
P0 0x80 Port 0 Latch 150
P0MDIN 0xF1 Port 0 Input Mode Configuration 150
P0MDOUT 0xA4 Port 0 Output Mode Configuration 151
P0SKIP 0xD4 Port 0 Skip 151
P1 0x90 Port 1 Latch 152
, ‘ SILIEIJN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
84 Rev. 1.5
P1MDIN 0xF2 Port 1 Input Mode Configuration 152
P1MDOUT 0xA5 Port 1 Output Mode Configuration 152
P1SKIP 0xD5 Port 1 Skip 153
P2 0xA0 Port 2 Latch 153
P2MDIN 0xF3 Port 2 Input Mode Configuration 153
P2MDOUT 0xA6 Port 2 Output Mode Configuration 154
P2SKIP 0xD6 Port 2 Skip 154
P3 0xB0 Port 3 Latch 155
P3MDIN 0xF4 Port 3 Input Mode Configuration 155
P3MDOUT 0xA7 Port 3 Output Mode Configuration 155
P3SKIP 0xDF Port 3Skip 156
P4 0xC7 Port 4 Latch 156
P4MDIN 0xF5 Port 4 Input Mode Configuration 157
P4MDOUT 0xAE Port 4 Output Mode Configuration 157
PCA0CN 0xD8 PCA Control 266
PCA0CPH0 0xFC PCA Capture 0 High 270
PCA0CPH1 0xEA PCA Capture 1 High 270
PCA0CPH2 0xEC PCA Capture 2 High 270
PCA0CPH3 0xEE PCA Capture 3High 270
PCA0CPH4 0xFE PCA Capture 4 High 270
PCA0CPL0 0xFB PCA Capture 0 Low 269
PCA0CPL1 0xE9 PCA Capture 1 Low 269
PCA0CPL2 0xEB PCA Capture 2 Low 269
PCA0CPL3 0xED PCA Capture 3 Low 269
PCA0CPL4 0xFD PCA Capture 4 Low 269
PCA0CPM0 0xDA PCA Module 0 Mode Register 268
PCA0CPM1 0xDB PCA Module 1 Mode Register 268
PCA0CPM2 0xDC PCA Module 2 Mode Register 268
PCA0CPM3 0xDD PCA Module 3 Mode Register 268
PCA0CPM4 0xDE PCA Module 4 Mode Register 268
PCA0H 0xFA PCA Counter High 269
PCA0L 0xF9 PCA Counter Low 269
PCA0MD 0xD9 PCA Mode 267
PCON 0x87 Power Control 98
PFE0CN 0xAF Prefetch Engine Control 99
PSCTL 0x8F Program Store R/W Control 112
PSW 0xD0 Program Status Word 87
REF0CN 0xD1 Voltage Reference Control 58
REG0CN 0xC9 Voltage Regulator Control 72
RSTSRC 0xEF Reset Source Configuration/Status 105
SBCON1 0xAC UART1 Baud Rate Generator Control 220
SBRLH1 0xB5 UART1 Baud Rate Generator High 221
SBRLL1 0xB4 UART1 Baud Rate Generator Low 221
SBUF1 0xD3 UART1 Data Buffer 220
SCON1 0xD2 UART1 Control 218
Table 9.3. Special Function Registers (Continued)
SFRs are listed in alphabetical order. All undefined SFR locations are reserved.
Register Address Description Page
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 85
SBUF0 0x99 UART0 Data Buffer 211
SCON0 0x98 UART0 Control 210
SMB0CF 0xC1 SMBus Configuration 194
SMB0CN 0xC0 SMBus Control 196
SMB0DAT 0xC2 SMBus Data 198
SMOD1 0xE5 UART1 Mode 219
SP 0x81 Stack Pointer 86
SPI0CFG 0xA1 SPI Configuration 229
SPI0CKR 0xA2 SPI Clock Rate Control 231
SPI0CN 0xF8 SPI Control 230
SPI0DAT 0xA3 SPI Data 231
TCON 0x88 Timer/Counter Control 239
TH0 0x8C Timer/Counter 0 High 242
TH1 0x8D Timer/Counter 1 High 242
TL0 0x8A Timer/Counter 0 Low 242
TL1 0x8B Timer/Counter 1 Low 242
TMOD 0x89 Timer/Counter Mode 240
TMR2CN 0xC8 Timer/Counter 2 Control 247
TMR2H 0xCD Timer/Counter 2 High 248
TMR2L 0xCC Timer/Counter 2 Low 248
TMR2RLH 0xCB Timer/Counter 2 Reload High 248
TMR2RLL 0xCA Timer/Counter 2 Reload Low 248
TMR3CN 0x91 Timer/Counter 3Control 253
TMR3H 0x95 Timer/Counter 3 High 254
TMR3L 0x94 Timer/Counter 3Low 254
TMR3RLH 0x93 Timer/Counter 3 Reload High 254
TMR3RLL 0x92 Timer/Counter 3 Reload Low 254
VDM0CN 0xFF VDD Monitor Control 102
USB0ADR 0x96 USB0 Indirect Address Register 163
USB0DAT 0x97 USB0 Data Register 164
USB0XCN 0xD7 USB0 Transceiver Control 161
XBR0 0xE1 Port I/O Crossbar Control 0 148
XBR1 0xE2 Port I/O Crossbar Control 1 149
XBR2 0xE3 Port I/O Crossbar Control 2 149
All Other Addresses Reserved
Table 9.3. Special Function Registers (Continued)
SFRs are listed in alphabetical order. All undefined SFR locations are reserved.
Register Address Description Page
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
86 Rev. 1.5
9.2.7. Register Descriptions
Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits
should not be set to logic l. Future product versions may use these bits to implement new features in which
case the reset value of the bit will be logic 0, selecting the feature's default state. Detailed descriptions of
the remaining SFRs are included in the sections of the datasheet associated with their corresponding sys-
tem function.
SFR Definition 9.1. DPL: Data Pointer Low Byte
SFR Definition 9.2. DPH: Data Pointer High Byte
SFR Definition 9.3. SP: Stack Pointer
Bits7–0: DPL: Data Pointer Low.
The DPL register is the low byte of the 16-bit DPTR. DPTR is used to access indirectly
addressed memory.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0x82
Bits7–0: DPH: Data Pointer High.
The DPH register is the high byte of the 16-bit DPTR. DPTR is used to access indirectly
addressed memory.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0x83
Bits7–0: SP: Stack Pointer.
The Stack Pointer holds the location of the top of the stack. The stack pointer is incremented
before every PUSH operation. The SP register defaults to 0x07 after reset.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
00000111
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0x81
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 87
SFR Definition 9.4. PSW: Program Status Word
SFR Definition 9.5. ACC: Accumulator
Bit7: CY: Carry Flag.
This bit is set when the last arithmetic operation resulted in a carry (addition) or a borrow
(subtraction). It is cleared to logic 0 by all other arithmetic operations.
Bit6: AC: Auxiliary Carry Flag
This bit is set when the last arithmetic operation resulted in a carry into (addition) or a borrow
from (subtraction) the high order nibble. It is cleared to logic 0 by all other arithmetic operations.
Bit5: F0: User Flag 0.
This is a bit-addressable, general purpose flag for use under software control.
Bits4–3: RS1–RS0: Register Bank Select.
These bits select which register bank is used during register accesses.
Bit2: OV: Overflow Flag.
This bit is set to 1 under the following circumstances:
• An ADD, ADDC, or SUBB instruction causes a sign-change overflow.
• A MUL instruction results in an overflow (result is greater than 255).
• A DIV instruction causes a divide-by-zero condition.
The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all other
cases.
Bit1: F1: User Flag 1.
This is a bit-addressable, general purpose flag for use under software control.
Bit0: PARITY: Parity Flag.
This bit is set to logic 1 if the sum of the eight bits in the accumulator is odd and cleared if the
sum is even.
R/W R/W R/W R/W R/W R/W R/W R Reset Value
CY AC F0 RS1 RS0 OV F1 PARITY 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
(bit addressable) 0xD0
RS1 RS0 Register Bank Address
0 0 0 0x00 - 0x07
0 1 1 0x08 - 0x0F
1 0 2 0x10 - 0x17
1 1 3 0x18 - 0x1F
Bits7–0: ACC: Accumulator.
This register is the accumulator for arithmetic operations.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
ACC.7 ACC.6 ACC.5 ACC.4 ACC.3 ACC.2 ACC.1 ACC.0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
(bit addressable) 0xE0
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
88 Rev. 1.5
SFR Definition 9.6. B: B Register
9.3. Interrupt Handler
The CIP-51 includes an extended interrupt system supporting multiple interrupt sources with two priority
levels. The allocation of interrupt sources between on-chip peripherals and external inputs pins varies
according to the specific version of the device. Each interrupt source has one or more associated inter-
rupt-pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condi-
tion, the associated interrupt-pending flag is set to logic 1.
If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is
set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a prede-
termined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI
instruction, which returns program execution to the next instruction that would have been executed if the
interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the
hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regard-
less of the interrupt's enable/disable state.)
Each interrupt source can be individually enabled or disabled through the use of an associated interrupt
enable bit in an SFR (IE-EIE2). However, interrupts must first be globally enabled by setting the EA bit
(IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables
all interrupt sources regardless of the individual interrupt-enable settings.
Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR.
However, most are not cleared by the hardware and must be cleared by software before returning from the
ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI)
instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after
the completion of the next instruction.
9.3.1. MCU Interrupt Sources and Vectors
The MCU supports multiple interrupt sources. Software can simulate an interrupt by setting any inter-
rupt-pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated and
the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources,
associated vector addresses, priority order and control bits are summarized in Table 9.4 on page 90. Refer
to the datasheet section associated with a particular on-chip peripheral for information regarding valid
interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).
9.3.2. External Interrupts
The INT0 and INT1 external interrupt sources are configurable as active high or low, edge or level sensi-
tive. The IN0PL (INT0 Polarity) and IN1PL (INT1 Polarity) bits in the IT01CF register select active high or
active low; the IT0 and IT1 bits in TCON (Section “21.1. Timer 0 and Timer 1” on page 235) select level
or edge sensitive. The following table lists the possible configurations.
Bits7–0: B: B Register.
This register serves as a second accumulator for certain arithmetic operations.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
B.7 B.6 B.5 B.4 B.3 B.2 B.1 B.0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
(bit addressable) 0xF0
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 89
INT0 and INT1 are assigned to Port pins as defined in the IT01CF register (see SFR Definition 9.13). Note
that INT0 and INT0 Port pin assignments are independent of any Crossbar assignments. INT0 and INT1
will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the
Crossbar. To assign a Port pin only to INT0 and/or INT1, configure the Crossbar to skip the selected pin(s).
This is accomplished by setting the associated bit in register XBR0 (see Section “15.1. Priority Crossbar
Decoder” on page 144 for complete details on configuring the Crossbar). In the typical configuration, the
external interrupt pin should be skipped in the crossbar and configured as open-drain with the pin latch set
to '1'.
IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the INT0 and INT1 external inter-
rupts, respectively. If an INT0 or INT1 external interrupt is configured as edge-sensitive, the corresponding
interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When
configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined
by the corresponding polarity bit (IN0PL or IN1PL); the flag remains logic 0 while the input is inactive. The
external interrupt source must hold the input active until the interrupt request is recognized. It must then
deactivate the interrupt request before execution of the ISR completes or another interrupt request will be
generated.
9.3.3. Interrupt Priorities
Each interrupt source can be individually programmed to one of two priority levels: low or high. A low prior-
ity interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be
preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP or EIP2) used to configure
its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with
the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is
used to arbitrate, given in Table 9.4.
9.3.4. Interrupt Latency
Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are
sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 6
system clock cycles: 1 clock cycle to detect the interrupt and 5 clock cycles to complete the LCALL to the
ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL
is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no
other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is
performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is
20 system clock cycles: 1 clock cycle to detect the interrupt, 6 clock cycles to execute the RETI, 8 clock
cycles to complete the DIV instruction and 5 clock cycles to execute the LCALL to the ISR. If the CPU is
executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the
current ISR completes, including the RETI and following instruction.
Note that the CPU is stalled during Flash write/erase operations and USB FIFO MOVX accesses (see
Section “13.2. Accessing USB FIFO Space” on page 115). Interrupt service latency will be increased for
interrupts occurring while the CPU is stalled. The latency for these situations will be determined by the
standard interrupt service procedure (as described above) and the amount of time the CPU is stalled.
IT0 IN0PL INT0 Interrupt IT1 IN1PL INT1 Interrupt
10
Active low, edge sensitive 10Active low, edge sensitive
11Active high, edge sensitive 11Active high, edge sensitive
00Active low, level sensitive 00Active low, level sensitive
01Active high, level sensitive 01Active high, level sensitive
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
90 Rev. 1.5
9.3.5. Interrupt Register Descriptions
The SFRs used to enable the interrupt sources and set their priority level are described below. Refer to the
datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt
conditions for the peripheral and the behavior of its interrupt-pending flag(s).
Table 9.4. Interrupt Summary
Interrupt Source Interrupt
Vector Priority
Order Pending Flag
Bit addressable?
Cleared by HW?
Enable
Flag Priority
Control
Reset 0x0000 Top None N/A N/A Always
Enabled Always
Highest
External Interrupt 0
(INT0)0x0003 0IE0 (TCON.1) Y Y EX0 (IE.0) PX0 (IP.0)
Timer 0 Overflow 0x000B 1TF0 (TCON.5) Y Y ET0 (IE.1) PT0 (IP.1)
External Interrupt 1
(INT1)0x0013 2IE1 (TCON.3) Y Y EX1 (IE.2) PX1 (IP.2)
Timer 1 Overflow 0x001B 3TF1 (TCON.7) Y Y ET1 (IE.3) PT1 (IP.3)
UART0 0x0023 4RI0 (SCON0.0)
TI0 (SCON0.1) Y N ES0 (IE.4) PS0 (IP.4)
Timer 2 Overflow 0x002B 5TF2H (TMR2CN.7)
TF2L (TMR2CN.6) Y N ET2 (IE.5) PT2 (IP.5)
SPI0 0x0033 6
SPIF (SPI0CN.7)
WCOL (SPI0CN.6)
MODF (SPI0CN.5)
RXOVRN (SPI0CN.4)
Y N ESPI0
(IE.6)PSPI0
(IP.6)
SMB0 0x003B 7SI (SMB0CN.0) Y N ESMB0
(EIE1.0) PSMB0
(EIP1.0)
USB0 0x0043 8Special N N EUSB0
(EIE1.1) PUSB0
(EIP1.1)
ADC0 Window
Compare 0x004B9AD0WINT
(ADC0CN.3) Y N EWADC0
(EIE1.2) PWADC0
(EIP1.2)
ADC0 Conversion
Complete 0x0053 10 AD0INT (ADC0CN.5) Y N EADC0
(EIE1.3) PADC0
(EIP1.3)
Programmable Counter
Array 0x005B 11 CF (PCA0CN.7)
CCFn (PCA0CN.n) Y N EPCA0
(EIE1.4) PPCA0
(EIP1.4)
Comparator0 0x0063 12 CP0FIF (CPT0CN.4)
CP0RIF (CPT0CN.5) N N ECP0
(EIE1.5) PCP0
(EIP1.5)
Comparator1 0x006B 13 CP1FIF (CPT1CN.4)
CP1RIF (CPT1CN.5) N N ECP1
(EIE1.6) PCP1
(EIP1.6)
Timer 3 Overflow 0x0073 14 TF3H (TMR3CN.7)
TF3L (TMR3CN.6) N N ET3
(EIE1.7) PT3
(EIP1.7)
VBUS Level 0x007B 15 N/A N/A N/A EVBUS
(EIE2.0) PVBUS
(EIP2.0)
UART1 0x0083 16 RI1 (SCON1.0)
TI1 (SCON1.1) N N ES1
(EIE2.1) PS1
(EIP2.1)
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 91
SFR Definition 9.7. IE: Interrupt Enable
Bit7: EA: Enable All Interrupts.
This bit globally enables/disables all interrupts. It overrides the individual interrupt mask set-
tings.
0: Disable all interrupt sources.
1: Enable each interrupt according to its individual mask setting.
Bit6: ESPI0: Enable Serial Peripheral Interface (SPI0) Interrupt.
This bit sets the masking of the SPI0 interrupts.
0: Disable all SPI0 interrupts.
1: Enable interrupt requests generated by SPI0.
Bit5: ET2: Enable Timer 2 Interrupt.
This bit sets the masking of the Timer 2 interrupt.
0: Disable Timer 2 interrupt.
1: Enable interrupt requests generated by the TF2L or TF2H flags.
Bit4: ES0: Enable UART0 Interrupt.
This bit sets the masking of the UART0 interrupt.
0: Disable UART0 interrupt.
1: Enable UART0 interrupt.
Bit3: ET1: Enable Timer 1 Interrupt.
This bit sets the masking of the Timer 1 interrupt.
0: Disable all Timer 1 interrupt.
1: Enable interrupt requests generated by the TF1 flag.
Bit2: EX1: Enable External Interrupt 1.
This bit sets the masking of External Interrupt 1.
0: Disable external interrupt 1.
1: Enable interrupt requests generated by the INT1 input.
Bit1: ET0: Enable Timer 0 Interrupt.
This bit sets the masking of the Timer 0 interrupt.
0: Disable all Timer 0 interrupt.
1: Enable interrupt requests generated by the TF0 flag.
Bit0: EX0: Enable External Interrupt 0.
This bit sets the masking of External Interrupt 0.
0: Disable external interrupt 0.
1: Enable interrupt requests generated by the INT0 input.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
EA ESPI0 ET2 ES0 ET1 EX1 ET0 EX0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
(bit addressable) 0xA8
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
92 Rev. 1.5
SFR Definition 9.8. IP: Interrupt Priority
Bit7: UNUSED. Read = 1, Write = don't care.
Bit6: PSPI0: Serial Peripheral Interface (SPI0) Interrupt Priority Control.
This bit sets the priority of the SPI0 interrupt.
0: SPI0 interrupt set to low priority level.
1: SPI0 interrupt set to high priority level.
Bit5: PT2: Timer 2 Interrupt Priority Control.
This bit sets the priority of the Timer 2 interrupt.
0: Timer 2 interrupt set to low priority level.
1: Timer 2 interrupts set to high priority level.
Bit4: PS0: UART0 Interrupt Priority Control.
This bit sets the priority of the UART0 interrupt.
0: UART0 interrupt set to low priority level.
1: UART0 interrupts set to high priority level.
Bit3: PT1: Timer 1 Interrupt Priority Control.
This bit sets the priority of the Timer 1 interrupt.
0: Timer 1 interrupt set to low priority level.
1: Timer 1 interrupts set to high priority level.
Bit2: PX1: External Interrupt 1 Priority Control.
This bit sets the priority of the External Interrupt 1 interrupt.
0: External Interrupt 1 set to low priority level.
1: External Interrupt 1 set to high priority level.
Bit1: PT0: Timer 0 Interrupt Priority Control.
This bit sets the priority of the Timer 0 interrupt.
0: Timer 0 interrupt set to low priority level.
1: Timer 0 interrupt set to high priority level.
Bit0: PX0: External Interrupt 0 Priority Control.
This bit sets the priority of the External Interrupt 0 interrupt.
0: External Interrupt 0 set to low priority level.
1: External Interrupt 0 set to high priority level.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
- PSPI0 PT2 PS0 PT1 PX1 PT0 PX0 10000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
(bit addressable) 0xB8
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 93
SFR Definition 9.9. EIE1: Extended Interrupt Enable 1
Bit7: ET3: Enable Timer 3 Interrupt.
This bit sets the masking of the Timer 3 interrupt.
0: Disable Timer 3 interrupts.
1: Enable interrupt requests generated by the TF3L or TF3H flags.
Bit6: ECP1: Enable Comparator1 (CP1) Interrupt.
This bit sets the masking of the CP1 interrupt.
0: Disable CP1 interrupts.
1: Enable interrupt requests generated by the CP1RIF or CP1FIF flags.
Bit5: ECP0: Enable Comparator0 (CP0) Interrupt.
This bit sets the masking of the CP0 interrupt.
0: Disable CP0 interrupts.
1: Enable interrupt requests generated by the CP0RIF or CP0FIF flags.
Bit4: EPCA0: Enable Programmable Counter Array (PCA0) Interrupt.
This bit sets the masking of the PCA0 interrupts.
0: Disable all PCA0 interrupts.
1: Enable interrupt requests generated by PCA0.
Bit3: EADC0: Enable ADC0 Conversion Complete Interrupt.
This bit sets the masking of the ADC0 Conversion Complete interrupt.
0: Disable ADC0 Conversion Complete interrupt.
1: Enable interrupt requests generated by the AD0INT flag.
Bit2: EWADC0: Enable Window Comparison ADC0 Interrupt.
This bit sets the masking of ADC0 Window Comparison interrupt.
0: Disable ADC0 Window Comparison interrupt.
1: Enable interrupt requests generated by ADC0 Window Compare flag (AD0WINT).
Bit1: EUSB0: Enable USB0 Interrupt.
This bit sets the masking of the USB0 interrupt.
0: Disable all USB0 interrupts.
1: Enable interrupt requests generated by USB0.
Bit0: ESMB0: Enable SMBus (SMB0) Interrupt.
This bit sets the masking of the SMB0 interrupt.
0: Disable all SMB0 interrupts.
1: Enable interrupt requests generated by SMB0.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
ET3 ECP1 ECP0 EPCA0 EADC0 EWADC0 EUSB0 ESMB0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0xE6
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
94 Rev. 1.5
SFR Definition 9.10. EIP1: Extended Interrupt Priority 1
Bit7: PT3: Timer 3 Interrupt Priority Control.
This bit sets the priority of the Timer 3 interrupt.
0: Timer 3 interrupts set to low priority level.
1: Timer 3 interrupts set to high priority level.
Bit6: PCP1: Comparator1 (CP1) Interrupt Priority Control.
This bit sets the priority of the CP1 interrupt.
0: CP1 interrupt set to low priority level.
1: CP1 interrupt set to high priority level.
Bit5: PCP0: Comparator0 (CP0) Interrupt Priority Control.
This bit sets the priority of the CP0 interrupt.
0: CP0 interrupt set to low priority level.
1: CP0 interrupt set to high priority level.
Bit4: PPCA0: Programmable Counter Array (PCA0) Interrupt Priority Control.
This bit sets the priority of the PCA0 interrupt.
0: PCA0 interrupt set to low priority level.
1: PCA0 interrupt set to high priority level.
Bit3: PADC0 ADC0 Conversion Complete Interrupt Priority Control.
This bit sets the priority of the ADC0 Conversion Complete interrupt.
0: ADC0 Conversion Complete interrupt set to low priority level.
1: ADC0 Conversion Complete interrupt set to high priority level.
Bit2: PWADC0: ADC0 Window Comparator Interrupt Priority Control.
This bit sets the priority of the ADC0 Window interrupt.
0: ADC0 Window interrupt set to low priority level.
1: ADC0 Window interrupt set to high priority level.
Bit1: PUSB0: USB0 Interrupt Priority Control.
This bit sets the priority of the USB0 interrupt.
0: USB0 interrupt set to low priority level.
1: USB0 interrupt set to high priority level.
Bit0: PSMB0: SMBus (SMB0) Interrupt Priority Control.
This bit sets the priority of the SMB0 interrupt.
0: SMB0 interrupt set to low priority level.
1: SMB0 interrupt set to high priority level.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
PT3 PCP1 PCP0 PPCA0 PADC0 PWADC0 PUSB0 PSMB0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0xF6
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 95
SFR Definition 9.11. EIE2: Extended Interrupt Enable 2
SFR Definition 9.12. EIP2: Extended Interrupt Priority 2
Bits7–2: UNUSED. Read = 000000b. Write = don’t care.
Bit1: ES1: Enable UART1 Interrupt.
This bit sets the masking of the UART1 interrupt.
0: Disable UART1 interrupt.
1: Enable UART1 interrupt.
Bit0: EVBUS: Enable VBUS Level Interrupt.
This bit sets the masking of the VBUS interrupt.
0: Disable all VBUS interrupts.
1: Enable interrupt requests generated by VBUS level sense.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
- - - - - - ES1 EVBUS 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0xE7
Bits7–2: UNUSED. Read = 000000b. Write = don’t care.
Bit1: PS1: UART1 Interrupt Priority Control.
This bit sets the priority of the UART1 interrupt.
0: UART1 interrupt set to low priority level.
1: UART1 interrupts set to high priority level.
Bit0: PVBUS: VBUS Level Interrupt Priority Control.
This bit sets the priority of the VBUS interrupt.
0: VBUS interrupt set to low priority level.
1: VBUS interrupt set to high priority level.
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
- - - - - - PS1 PVBUS 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0xF7
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
96 Rev. 1.5
SFR Definition 9.13. IT01CF: INT0/INT1 Configuration
Bit7: IN1PL: INT1 Polarity
0: INT1 input is active low.
1: INT1 input is active high.
Bits6–4: IN1SL2–0: INT1 Port Pin Selection Bits
These bits select which Port pin is assigned to INT1. Note that this pin assignment is inde-
pendent of the Crossbar; INT1 will monitor the assigned Port pin without disturbing the
peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not
assign the Port pin to a peripheral if it is configured to skip the selected pin (accomplished by
setting to ‘1’ the corresponding bit in register P0SKIP).
Bit3: IN0PL: INT0 Polarity
0: INT0 interrupt is active low.
1: INT0 interrupt is active high.
Bits2–0: INT0SL2–0: INT0 Port Pin Selection Bits
These bits select which Port pin is assigned to INT0. Note that this pin assignment is inde-
pendent of the Crossbar. INT0 will monitor the assigned Port pin without disturbing the
peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not
assign the Port pin to a peripheral if it is configured to skip the selected pin (accomplished by
setting to ‘1’ the corresponding bit in register P0SKIP).
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
IN1PL IN1SL2 IN1SL1 IN1SL0 IN0PL IN0SL2 IN0SL1 IN0SL0 00000001
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0xE4
Note: Refer to SFR Definition 21.1 for INT0/1 edge- or level-sensitive interrupt selection.
IN1SL2–0 INT1 Port Pin
000 P0.0
001 P0.1
010 P0.2
011 P0.3
100 P0.4
101 P0.5
110 P0.6
111 P0.7
IN0SL2–0 INT0 Port Pin
000 P0.0
001 P0.1
010 P0.2
011 P0.3
100 P0.4
101 P0.5
110 P0.6
111 P0.7
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 97
9.4. Power Management Modes
The CIP-51 core has two software programmable power management modes: Idle and Stop. Idle mode
halts the CPU while leaving the peripherals and clocks active. In Stop mode, the CPU is halted, all inter-
rupts, are inactive, and the internal oscillator is stopped (analog peripherals remain in their selected states;
the external oscillator is not affected). Since clocks are running in Idle mode, power consumption is depen-
dent upon the system clock frequency and the number of peripherals left in active mode before entering
Idle. Stop mode consumes the least power. Figure 1.15 describes the Power Control Register (PCON)
used to control the CIP-51's power management modes.
Although the CIP-51 has Idle and Stop modes built in (as with any standard 8051 architecture), power
management of the entire MCU is better accomplished through system clock and individual peripheral
management. Each analog peripheral can be disabled when not in use and placed in low power mode.
Digital peripherals, such as timers or serial buses, draw little power when they are not in use. Turning off
the oscillators lowers power consumption considerably; however a reset is required to restart the MCU.
The internal oscillator can be placed in Suspend mode (see Section “14. Oscillators” on page 131). In
Suspend mode, the internal oscillator is stopped until a non-idle USB event is detected, or the VBUS input
signal matches the polarity selected by the VBPOL bit in register REG0CN (SFR Definition 8.1).
9.4.1. Idle Mode
Setting the Idle Mode Select bit (PCON.0) causes the CIP-51 to halt the CPU and enter Idle mode as soon
as the instruction that sets the bit completes execution. All internal registers and memory maintain their
original data. All analog and digital peripherals can remain active during Idle mode.
Idle mode is terminated when an enabled interrupt is asserted or a reset occurs. The assertion of an
enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume
operation. The pending interrupt will be serviced and the next instruction to be executed after the return
from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit.
If Idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence
and begins program execution at address 0x0000.
If enabled, the Watchdog Timer (WDT) will eventually cause an internal watchdog reset and thereby termi-
nate the Idle mode. This feature protects the system from an unintended permanent shutdown in the event
of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be disabled by
software prior to entering the Idle mode if the WDT was initially configured to allow this operation. This pro-
vides the opportunity for additional power savings, allowing the system to remain in the Idle mode indefi-
nitely, waiting for an external stimulus to wake up the system. Refer to Section “11.6. PCA Watchdog
Timer Reset” on page 103 for more information on the use and configuration of the WDT.
9.4.2. Stop Mode
Setting the Stop Mode Select bit (PCON.1) causes the CIP-51 to enter Stop mode as soon as the instruc-
tion that sets the bit completes execution. In Stop mode the internal oscillator, CPU, and all digital peripher-
als are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral (including
the external oscillator circuit) may be shut down individually prior to entering Stop Mode. Stop mode can
only be terminated by an internal or external reset. On reset, the CIP-51 performs the normal reset
sequence and begins program execution at address 0x0000.
If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode.
The Missing Clock Detector should be disabled if the CPU is to be put to in STOP mode for longer than the
MCD timeout of 100 µsec.
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
98 Rev. 1.5
SFR Definition 9.14. PCON: Power Control
Bits7–2: GF5–GF0: General Purpose Flags 5–0.
These are general purpose flags for use under software control.
Bit1: STOP: Stop Mode Select.
Setting this bit will place the CIP-51 in Stop mode. This bit will always be read as 0.
1: CPU goes into Stop mode (internal oscillator stopped).
Bit0: IDLE: Idle Mode Select.
Setting this bit will place the CIP-51 in Idle mode. This bit will always be read as 0.
1: CPU goes into Idle mode. (Shuts off clock to CPU, but clock to Timers, Interrupts, Serial
Ports, and Analog Peripherals are still active.)
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
GF5 GF4 GF3 GF2 GF1 GF0 STOP IDLE 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0x87
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.5 99
10. Prefetch Engine
The 48 MHz versions of the C8051F34x family of devices incorporate a 2-byte prefetch engine. Because
the access time of the FLASH memory is 40 ns, and the minimum instruction time is roughly 20 ns, the
prefetch engine is necessary for full-speed code execution. Instructions are read from FLASH memory two
bytes at a time by the prefetch engine, and given to the CIP-51 processor core to execute. When running
linear code (code without any jumps or branches), the prefetch engine allows instructions to be executed
at full speed. When a code branch occurs, the processor may be stalled for up to two clock cycles while the
next set of code bytes is retrieved from FLASH memory. The FLRT bit (FLSCL.4) determines how many
clock cycles are used to read each set of two code bytes from FLASH. When operating from a system
clock of 25 MHz or less, the FLRT bit should be set to ‘0’ so that the prefetch engine takes only one clock
cycle for each read. When operating with a system clock of greater than 25 MHz (up to 48 MHz), the
prefetch engine must be enabled by setting the PFEN bit to '1', and the FLRT bit should be set to '1' so that
each prefetch code read lasts for two clock cycles.
SFR Definition 10.1. PFE0CN: Prefetch Engine Control
Bits 7–6: Unused. Read = 00b; Write = Don’t Care
Bit 5: PFEN: Prefetch Enable.
This bit enables the prefetch engine.
0: Prefetch engine is disabled.
1: Prefetch engine is enabled.
Bits 4–1: Unused. Read = 0000b; Write = Don’t Care
Bit 0: FLBWE: FLASH Block Write Enable.
This bit allows block writes to FLASH memory from software.
0: Each byte of a software FLASH write is written individually.
1: FLASH bytes are written in groups of two.
R R R/W R R R R R/W Reset Value
PFEN FLBWE 00100000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
SFR Address: 0xAF
SSSSSSSSSSS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
Rev. 1.3 100
11. Reset Sources
Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this
reset state, the following occur:
CIP-51 halts program execution
Special Function Registers (SFRs) are initialized to their defined reset values
External Port pins are forced to a known state
Interrupts and timers are disabled.
All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal
data memory are unaffected during a reset; any previously stored data is preserved. However, since the
stack pointer SFR is reset, the stack is effectively lost even though the data on the stack is not altered.
The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pull-ups are enabled
during and after the reset. For VDD Monitor and Power-On Resets, the RST pin is driven low until the
device exits the reset state.
On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the inter-
nal oscillator. Refer to Section “14. Oscillators” on page 131 for information on selecting and configuring
the system clock source. The Watchdog Timer is enabled with the system clock divided by 12 as its clock
source (Section “22.3. Watchdog Timer Mode” on page 264 details the use of the Watchdog Timer).
Program execution begins at location 0x0000.
Figure 11.1. Reset Sources
PCA
WDT
Missing
Clock
Detector
(one-
shot) Software Reset (SWRSF)
System Reset
Reset
Funnel
Px.x
Px.x
EN
System
Clock CIP-51
Microcontroller
Core
Extended Interrupt
Handler
Clock Select
EN
WDT
Enable
MCD
Enable
Errant
FLASH
Operation
+
-
Comparator 0
C0RSEF
RST
(wired-OR)
Power On
Reset
+
-
VDD
Supply
Monitor
Enable
'0'
Internal HF
Oscillator
XTAL1
XTAL2
External
Oscillator
Drive
Clock
Multiplier
USB
Controller VBUS
Transition
Enable
Internal LF
Oscillator
, . SILIEUN LABS
C8051F340/1/2/3/4/5/6/7/8/9/A/B/C/D
101 Rev. 1.3
11.1. Power-On Reset
During power-up, the device is held in a reset state and the RST pin is driven low until VDD settles above
VRST. A Power-On Reset delay (TPORDelay) occurs before the device is released from reset; this delay is
typically less than 0.3 ms. Figure 11.2. plots the power-on and VDD monitor reset timing.
On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is
set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other
resets). Since all resets cause program execution to begin at the same location (0x0000) software can
read the PORSF flag to determine if a power-up was the cause of reset. The content of internal data mem-
ory should be assumed to be undefined after a power-on reset. The VDD monitor is enabled following a
power-on reset.
Software can force a power-on reset by writing ‘1’ to the PINRSF bit in register RSTSRC.
Figure 11.2. Power-On and VDD Monitor Reset Timing
Power-On
Reset
VD