TSV630(A), TSV631(A) Datasheet by STMicroelectronics

View All Related Products | Download PDF Datasheet
I ’l hienugmented E E DFN61ZX1 3, TSVBSD DFN8 2X2 (on requesn Lt’ r, L" w": L; E: 597075, TSVS3O SOTZS’S. TSVSSO U/ 1%, Liz SC70-5. TSV631 SOT23-5, TSVSCH
September 2016
DocID15242 Rev 8
1/29
This is information on a product in full production.
www.st.com
TSV630, TSV630A, TSV631,
TSV631A
Rail-to-rail input/output, 60 µA, 880 kHz, 5 V CMOS operational
amplifiers
Datasheet - production data
Features
Low offset voltage: 500 µV max (A version)
Low power consumption: 60 µA typ at 5 V
Low supply voltage: 1.5 V - 5.5 V
Gain bandwidth product: 880 kHz typ
Unity gain stability
Low power shutdown mode: 5 nA typ
High output current: 63 mA at VCC = 5 V
Low input bias current: 1 pA typ
Rail-to-rail input and output
Extended temperature range: -40 °C to
125 °C
Automotive qualification
Related products
See the TSV521 series for higher merit
factor (1.15 MHz for 45 µA)
See the TSV611 (120 kHz for 9 µA) or the
TSV621 (420 kHz for 29 µA) for more power
savings
Applications
Battery-powered applications
Portable devices
Active filtering
Medical instrumentation
Description
The TSV630 and TSV631 devices are single
operational amplifiers offering low voltage, low
power operation, and rail-to-rail input and output.
These devices have a very low input bias current
and a low offset voltage making them ideal for
applications that require precision. They can
operate at power supplies ranging from 1.5 V to
5.5 V, and are therefore very suitable for battery-
powered devices, extending battery life.
These op-amps feature an excellent speed/power
consumption ratio, offering an 880 kHz gain
bandwidth while consuming only 60 µA at a 5 V
supply voltage. They are unity gain stable for
capacitive loads up to 100 pF.
The devices are internally adjusted to provide
very narrow dispersion of AC and DC
parameters. The TSV630 provides a shutdown
function. All devices are offered in
micropackages and are guaranteed for industrial
temperature ranges from -40 ° C to 125 ° C.
These features combined make the TSV630 and
TSV631 ideal for sensor interfaces, battery-
supplied and portable applications, as well as
active filtering.
TSV630, TSV630A, TSV631, TSV631A
2/29
DocID15242 Rev 8
Contents
1 Package pin connections ................................................................ 3
2 Absolute maximum ratings and operating conditions ................. 4
3 Electrical characteristics ................................................................ 5
4 Application information ................................................................ 13
4.1 Operating voltages .......................................................................... 13
4.2 Rail-to-rail input ............................................................................... 13
4.3 Rail-to-rail output ............................................................................. 13
4.4 Shutdown function (TSV630) .......................................................... 14
4.5 Optimization of DC and AC parameters .......................................... 15
4.6 Driving resistive and capacitive loads ............................................. 15
4.7 PCB layouts .................................................................................... 15
4.8 Macromodel .................................................................................... 16
5 Package information ..................................................................... 17
5.1 DFN6 1.2x1.3 package information ................................................. 18
5.2 DFN8 2x2 package information ....................................................... 20
5.3 SC70-6 (or SOT323-6) package information ................................... 22
5.4 SOT23-6 package information ........................................................ 24
5.5 SC70-5 (or SOT323-5) package information ................................... 25
5.6 SOT23-5 package information ........................................................ 26
6 Ordering information ..................................................................... 27
7 Revision history ............................................................................ 28
E] OUT Vcc- OUT Vccr |N+ VCO |N+ VCC- 1 @ vcc+ D @ SHDN 3 Q \N+ VCC+ SHDN |N+ NC DFNB 2x2 (TSVSGOIQZT) O VCC+ SHDN OUT SC‘IDrfi/SOTZSVS (Tsvsau) O vcc+ OUT Sc7ors/SOT2375 (TSVGS!)
TSV630, TSV630A, TSV631, TSV631A
Package pin connections
DocID15242 Rev 8
3/29
1 Package pin connections
Figure 1: Pin connections for each package (top view)
1. The exposed pad of the DFN8 2x2 can be connected to VCC- or left floating.
Absolute maximum ratings and operating
conditions
TSV630, TSV630A, TSV631, TSV631A
4/29
DocID15242 Rev 8
2 Absolute maximum ratings and operating conditions
Table 1: Absolute maximum ratings (AMR)
Symbol
Parameter
Value
Unit
VCC
Supply voltage (1)
6
V
Vid
Differential input voltage (2)
±VCC
Vin
Input voltage (3)
(VCC-) - 0.2 to (VCC+) + 0.2
Iin
Input current (4)
10
mA
SHDN
Shutdown voltage (3)
6
V
Tstg
Storage temperature
-65 to 150
°C
Rthja (5) (6)
Thermal resistance junction-to-
ambient
DFN6 1.2x1.3
232
°C/W
DFN8 2x2
57
SC70-6
232
SOT23-6
240
SC70-5
205
SOT23-5
250
Tj
Maximum junction temperature
150
°C
ESD
HBM: human body model (7)
4
kV
MM: machine model (8)
300
V
CDM: charged device model (9)
1.5
kV
Latch-up immunity
200
mA
Notes:
(1)All voltage values, except the differential voltage are with respect to the network ground terminal.
(2)The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.
(3)VCC - Vin must not exceed 6 V
(4)Input current must be limited by a resistor in series with the inputs.
(5)Rth are typical values.
(6)Short-circuits can cause excessive heating and destructive dissipation.
(7)100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin
combinations with other pins floating
(8)A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device
with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins
floating
(9)All pins plus package are charged together to the specified voltage and then discharged directly to the ground
Table 2: Operating conditions
Symbol
Parameter
Value
Unit
VCC
Supply voltage
1.5 to 5.5
V
Vicm
Common mode input voltage range
(VCC-) - 0.1 to (VCC+) + 0.1
Toper
Operating free air temperature range
-40 to 125
°C
TSV630, TSV630A, TSV631, TSV631A
Electrical characteristics
DocID15242 Rev 8
5/29
3 Electrical characteristics
Table 3: Electrical characteristics at VCC+ = 1.8 V with VCC- = 0 V, Vicm = VCC/2,
Tamb = 25 ° C and RL connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
Vio
Offset voltage
TSV630, TSV631
3
mV
TSV630A, TSV631A
0.5
-40 °C < Top < 125 °C,
TSV630, TSV631
4.5
-40 °C < Top < 125 °C,
TSV630A, TSV631A
2
ΔVio/ΔT
Input offset voltage drift
2
μV/°C
Iio
Input offset current,
Vout = VCC/2
1
10 (1)
pA
-40 °C < Top < 125 °C
1
100
Iib
Input bias current,
Vout = VCC/2
1
10 (1)
-40 °C < Top < 125 °C
1
100
CMR
Common mode rejection
ratio 20 log, ΔVic/ΔVio
0 V to 1.8 V, Vout = 0.9 V
53
74
dB
-40 °C < Top < 125 °C
51
Avd
Large signal voltage gain
RL= 10 kΩ, Vout = 0.5 V to 1.3 V
85
95
-40 °C < Top < 125 °C
80
VOH
High level output voltage,
VOH = VCC - Vout
RL = 10
5
35
mV
-40 °C < Top < 125 °C
50
VOL
Low level output voltage
RL = 10
4
35
-40 °C < Top < 125 °C
50
Iout
Isink
Vο = 1.8 V
6
12
mA
-40 °C < Top < 125 °C
4
Isource
Vο = 0 V
6
10
-40 °C < Top < 125 °C
4
ICC
Supply current,
SHDN = VCC+
No load, Vout = VCC/2
40
50
60
µA
-40 °C < Top < 125 °C
62
AC performance
GBP
Gain bandwidth product
RL = 2 kΩ, CL = 100 pF, f = 100 kHz
700
790
kHz
ɸm
Phase margin
RL = 2 kΩ, CL = 100 pF
48
Degrees
Gm
Gain margin
11
dB
SR
Slew rate
RL = 2 kΩ, CL = 100 pF, Av = 1
0.2
0.27
V/μs
en
Equivalent input noise
voltage
f = 1 kHz
67
nV/√Hz
f = 10 kHz
53
Notes:
(1)Guaranteed by design.
Electrical characteristics
TSV630, TSV630A, TSV631, TSV631A
6/29
DocID15242 Rev 8
Table 4: Shutdown characteristics VCC = 1.8 V
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
ICC
Supply current in shutdown
mode (all operators)
SHDN = VCC-
2.5
50
-40 °C < Top < 85 °C
200
-40 °C < Top < 125 °C
1.5
µA
ton
Amplifier turn-on time
RL = 2 kΩ, Vout = (VCC-) + 0.2 V
to (VCC+) - 0.2 V
300
ns
toff
Amplifier turn-off time
RL = 2 kΩ, Vout = (VCC-) + 0.2 V
to (VCC+) - 0.2 V
20
VIH
SHDN logic high
1.3
V
VIL
SHDN logic low
0.5
IIH
SHDN current high
SHDN = VCC+
10
pA
IIL
SHDN current low
SHDN = VCC-
10
IOLeak
Output leakage in shutdown
mode
SHDN = VCC-
50
-40 °C < Top < 125 °C
1
nA
TSV630, TSV630A, TSV631, TSV631A
Electrical characteristics
DocID15242 Rev 8
7/29
Table 5: Electrical characteristics at VCC+ = 3.3 V, VCC- = 0 V, Vicm = VCC/2,
Tamb = 25 ° C, RL connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
Vio
Offset voltage
TSV630, TSV631
3
mV
TSV630A, TSV631A
0.5
-40 °C < Top < 125 °C,
TSV630, TSV631
4.5
-40 °C < Top < 125 °C,
TSV630A, TSV631A
2
ΔVio/ΔT
Input offset voltage drift
2
μV/°C
Iio
Input offset current
1
10 (1)
pA
-40 °C < Top < 125 °C
1
100
Iib
Input bias current
1
10 (1)
-40 °C < Top < 125 °C
1
100
CMR
Common mode rejection
ratio 20 log, ΔVic/ΔVio
0 V to 3.3 V, Vout = 1.75 V
57
79
dB
-40 °C < Top < 125 °C
53
Avd
Large signal voltage gain
RL = 10 kΩ, Vout = 0.5 V to 2.8 V
88
98
-40 °C < Top < 125 °C
83
VOH
High level output voltage,
VOH = VCC - Vout
RL = 10
6
35
mV
-40 °C < Top < 125 °C
50
VOL
Low level output voltage
RL = 10
7
35
-40 °C < Top < 125 °C
50
Iout
Isink
Vο = 3.3 V
30
45
mA
-40 °C < Top < 125 °C
25
42
Isource
Vο = 0 V
30
38
-40 °C < Top < 125 °C
25
ICC
Supply current,
SHDN = VCC+
No load, Vout = 1.75 V
43
55
64
µA
-40 °C < Top < 125 °C
66
AC performance
GBP
Gain bandwidth product
RL = 2 kΩ, CL = 100 pF,
f = 100 kHz
710
860
kHz
ɸm
Phase margin
RL = 2 kΩ, CL = 100 pF
50
Degrees
Gm
Gain margin
11
dB
SR
Slew rate
RL = 2 kΩ, CL = 100 pF, Av = 1
0.22
0.29
V/μs
en
Equivalent input noise
voltage
f = 1 kHz
64
nV/√Hz
f = 10 kHz
51
Notes:
(1)Guaranteed by design.
Electrical characteristics
TSV630, TSV630A, TSV631, TSV631A
8/29
DocID15242 Rev 8
Table 6: Electrical characteristics at VCC+ = 5 V with VCC- = 0 V, Vicm = VCC/2,
Tamb = 25° C and RL connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
Vio
Offset voltage
TSV630, TSV631
3
mV
TSV630A, TSV631A
0.5
-40 °C < Top < 125 °C,
TSV630, TSV631
4.5
-40 °C < Top < 125 °C,
TSV630A, TSV631A
2
ΔVio/ΔT
Input offset voltage drift
2
μV/°C
Iio
Input offset current,
Vout = VCC/2
1
10 (1)
pA
-40 °C < Top < 125 °C
1
100
Iib
Input bias current,
Vout = VCC/2
1
10 (1)
-40 °C < Top < 125 °C
1
100
CMR
Common mode rejection ratio
20 log, ΔVic/ΔVio
0 V to 5 V, Vout = 2.5 V
60
80
dB
-40 °C < Top < 125 °C
55
SVR
Supply voltage rejection ratio
20 log, ΔVCC/ΔVio
VCC = 1.8 to 5 V
75
102
-40 °C < Top < 125 °C
Avd
Large signal voltage gain
RL= 10 kΩ, Vout = 0.5 V to 4.5 V
89
98
-40 °C < Top < 125 °C
84
VOH
High level output voltage,
VOH = VCC - Vout
RL = 10
7
35
mV
-40 °C < Top < 125 °C
50
VOL
Low level output voltage
RL = 10
6
35
-40 °C < Top < 125 °C
50
Iout
Isink
Vο = 5 V
40
69
mA
-40 °C < Top < 125 °C
35
65
Isource
Vο = 0 V
40
74
-40 °C < Top < 125 °C
36
68
ICC
Supply current
SHDN = VCC+
No load, Vout = VCC/2
50
60
69
µA
-40 °C < Top < 125 °C
72
AC performance
GBP
Gain bandwidth product
RL = 2 kΩ, CL= 100 pF,
f = 100 kHz
730
880
kHz
F u
Unity gain frequency
RL = 2 kΩ, CL = 100 pF,
830
ɸm
Phase margin
50
Degrees
Gm
Gain margin
12
dB
SR
Slew rate
RL = 2 kΩ, CL = 100 pF, Av = 1
0.25
0.34
V/μs
en
Equivalent input noise
voltage
f = 1 kHz
60
nV/√Hz
f = 10 kHz
47
TSV630, TSV630A, TSV631, TSV631A
Electrical characteristics
DocID15242 Rev 8
9/29
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
THD+en
Total harmonic distortion
f = 1 kHz, AV = 1, RL = 100 kΩ,
Vicm = VCC/2, Vout = 2 VPP
0.0017
%
Notes:
(1)Guaranteed by design.
Table 7: Shutdown characteristics VCC = 5 V
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
ICC
Supply current in shutdown
mode (all operators)
SHDN = VCC-
5
50
-40 °C < Top < 85 °C
200
-40 °C < Top < 125 °C
1.5
µA
ton
Amplifier turn-on time
RL = 2 kΩ, Vout = (VCC-) + 0.2 V
to (VCC+) - 0.2 V
300
ns
toff
Amplifier turn-off time
RL = 2 kΩ, Vout = (VCC-) + 0.2 V
to (VCC+) - 0.2 V
30
VIH
SHDN logic high
4.5
V
VIL
SHDN logic low
0.5
IIH
SHDN current high
SHDN = VCC+
10
pA
IIL
SHDN current low
SHDN = VCC-
10
IOLeak
Output leakage in shutdown
mode
SHDN = VCC-
50
-40 °C < Top < 125 °C
1
nA
supmy Cunenl (M) erwvmz a 1 2 3 4 Supply mug. (vy wan n ma Unszalfle Fullnwev mnr mau‘un v:c V,Vwcm 5v, R\:100kohms (a 1m (EA: ‘Es (E77 Capacmve \aad (F) Oulput Cum"! ("IN 75 63 SH 25 — 25‘s 0 Vac: T:125"C ,59 Smk 753 vm: .w ,75 Tzao‘c 0,0 0.5 10 15 20 25 30 35 40 4,5 5.u Ouwul Vu‘taga (V) Gamma) mow mm mama ‘E Frequency (Hz) 150 (an Phasin} ma ME) V((:SV,V\Em:2SV,G: an R\:Zkahms, uon,vn:Vcc/2 T: \ 25°C mm (mm (manna Frequency (Hz) (an we Phase("} fin mu 15H m E :5 DC mnpm current (MA)
Electrical characteristics
TSV630, TSV630A, TSV631, TSV631A
10/29
DocID15242 Rev 8
Figure 2: Supply current vs. supply voltage at
Vicm = VCC/2
Figure 3: In-series resistor (Riso) vs. capacitive load
Figure 4: Output current vs. output voltage at VCC = 5 V
Figure 5: Voltage gain and phase vs. frequency at
VCC = 1.5 V
Figure 6: Voltage gain and phase vs. frequency at
VCC = 5 V
Figure 7: Phase margin vs. output current at
VCC = 5 V
In-seriesresistor Ω)
-1.5 -1.0 -0.5 0.00.5 1.01.5
0
10
20
30
40
50
60
70
80
90
Vcc=5V, Vicm=2.5V
Rl =2kohms, T=25ºC
Cl=330pF
Cl=100pF
Dutput Voltag- (V) Vc::5V‘ vicm:2 SV‘ T:25‘C R\:2Kohms, deoupfi Vr\:Vch2 Vcc:5V‘R\=2kohms, =1DDpF mm mm 0 4V1: ku 4v SR calcmaled 1mm 10% k) 90% Pasmw sluw Rm- (wus! 7:290 T=125“C Negzlive Slew Rm (V/us) Vcc:5V‘ R\:2kahms, 0:10on Vm: from n.4v to Vac-a AV SR ca‘cmmed Ivom 10% «o 90% m um «41 41 00' 1E: m1 m ‘ E]
TSV630, TSV630A, TSV631, TSV631A
Electrical characteristics
DocID15242 Rev 8
11/29
Figure 8: Positive slew rate vs. time
Figure 9: Negative slew rate vs. time
Figure 10: Positive slew rate vs. supply voltage
Figure 11: Negative slew rate vs. supply voltage
Figure 12: Distortion + noise vs. output voltage
(RL = 2 kΩ)
Figure 13: Distortion + noise vs. output voltage
(RL = 100 kΩ)
Time s)
Output voltage(V)
Time s)
2.52.53.03.03.53.54.04.04.54.55.05.05.55.5
0.00.0
0.10.1
0.20.2
0.30.3
0.40.4
0.50.5
Supply voltage (V)
2.52.53.03.03.53.54.04.04.54.55.05.05.55.5
-0.5-0.5
-0.4-0.4
-0.3-0.3
-0.2-0.2
-0.1-0.1
0.00.0
Supply voltage (V)
f=1kHz, Av=1
Rl=2kOhmsto Vcc/2
Vicm=(Vcc-0.7)/2
BW=22kHz
Vcc=1.5V
Vcc=1.8V Vcc=3.3V
Vcc=5V
THD + N (%)
Output Voltage(Vpp)
f=1kHz, Av=1
100kOhms to Vcc/2
Vicm=(Vcc-0.7)/2
BW=22kHz
Vcc=1.5V
Vcc=5.5V
THD + N (%)
Output Voltage(Vpp)
RI=
THD > N (w m V Vm:50mVpp VwrFZUUmVpp om IE3 Vcc=5V R\:2k0hms Sam 1 B UkHz Vlcm cc/Z IOD moo moon mqmcy 1N!) THD+N(%} m mm ID moo Frequency [H1] Iuoou
Electrical characteristics
TSV630, TSV630A, TSV631, TSV631A
12/29
DocID15242 Rev 8
Figure 14: Distortion + noise vs. frequency and input
voltage
Figure 15: Distortion + noise vs. frequency and output
load resistor
Figure 16: Noise vs. frequency
0.01 0.1 1 10
10
100
1000
Vicm=4.5V
Vicm=2.5V
Vcc=5V
T=25°C
Input equivalent voltage noise density (nV/VHz)
Frequency (kHz)
100
,5 -o.2 0.1) 0.2 0.4 0.6 0.1; 1.0 1.2 1.4 l.6 MumCommanModeVaHageLV) mpm Umekvoltage 1er 0.4 \Vcc:5v, T:25"C 0.2 0.0 7112 -W 70.4 0.0 1.0 2.0 3.0 4.0 5.0 1npu1 Common ModeVanage (V) E]
TSV630, TSV630A, TSV631, TSV631A
Application information
DocID15242 Rev 8
13/29
4 Application information
4.1 Operating voltages
The TSV630 and TSV631 can operate from 1.5 V to 5.5 V. Their parameters are fully
specified for 1.8-V, 3.3-V, and 5-V power supplies. However, the parameters are very
stable in the full VCC range and several characterization curves show the TSV63x
characteristics at 1.5 V. In addition, the main specifications are guaranteed in extended
temperature ranges from -40 °C to 125 °C.
4.2 Rail-to-rail input
The TSV630 and TSV631 are built with two complementary PMOS and NMOS input
differential pairs. The devices have a rail-to-rail input, and the input common mode range is
extended from (VCC-) - 0.1 V to (VCC+) + 0.1 V. The transition between the two pairs appears
at (VCC+) - 0.7 V. In the transition region, the performance of CMRR, PSRR, Vio and THD is
slightly degraded (as shown in Figure 17 and Figure 18 for Vio vs. Vicm).
Figure 17: Input offset voltage vs input common mode at
VCC = 1.5 V
Figure 18: Input offset voltage vs input common mode at
VCC = 5 V
The device is guaranteed without phase reversal.
4.3 Rail-to-rail output
The operational amplifiers’ output levels can go close to the rails: to a maximum of 35 mV
above and below the rail when a 10 kΩ resistive load is connected to VCC/2.
Volugew 2 Tm (us) Shmdown pulse 0mm vo‘tagel m w Shuldcwn mm M u; Tm (us) Us u4
Application information
TSV630, TSV630A, TSV631, TSV631A
14/29
DocID15242 Rev 8
4.4 Shutdown function (TSV630)
The operational amplifier is enabled when the SHDN pin is pulled high. To disable the
amplifier, the SHDN must be pulled down to VCC-. When in shutdown mode, the amplifier
output is in a high impedance state. The SHDN pin must never be left floating, but must
be tied to VCC+ or VCC-.
The turn-on and turn-off time are calculated for an output variation of ±200 mV (Figure 19
and Figure 20 show the test configurations).
Figure 21 and Figure 22 show the amplifier output voltage behavior when the SHDN pin
is toggled high and low.
Figure 19: Test configuration for turn-on time
(Vout pulled down)
Figure 20: Test configuration for turn-off time
(Vout pulled down)
Figure 21: Turn-on time, VCC = ±2.5 V,
Vout pulled down, T = 25 °C
Figure 22: Turn-off time, VCC = ±2.5 V,
Vout pulled down, T = 25 °C
2 V +
-
+2.5 V
DUT
- 2.5 V
GND
2 kΩ
2 V +
-
+2.5 V
DUT
- 2.5 V
GND
2 kΩ
1000 100 ln-series resistor l ) 10 lE-1D Unstable Follower configuration Vcc:5V, Vicm:2.5V, T:25°C RI:100koth 1E-Q 1E-8 Capacmve load (F) 1E-7 E]
TSV630, TSV630A, TSV631, TSV631A
Application information
DocID15242 Rev 8
15/29
4.5 Optimization of DC and AC parameters
These devices use an innovative approach to reduce the spread of the main DC and AC
parameters. An internal adjustment achieves a very narrow spread of the current
consumption (60 µA typical, min/max at ±17 %). Parameters linked to the current
consumption value, such as GBP, SR and AVd, benefit from this narrow dispersion. All
parts present a similar speed and the same behavior in terms of stability. In addition, the
minimum values of GBP and SR are guaranteed (GBP = 730 kHz minimum and SR =
0.25 V/µs minimum).
4.6 Driving resistive and capacitive loads
These products are micro-power, low-voltage operational amplifiers optimized to drive
rather large resistive loads, above 2 kΩ. For lower resistive loads, the THD level may
significantly increase.
In a follower configuration, these operational amplifiers can drive capacitive loads up to
100 pF with no oscillations. When driving larger capacitive loads, adding an in-series
resistor at the output can improve the stability of the devices (see Figure 23 for
recommended in-series resistor values). Once the in-series resistor value has been
selected, the stability of the circuit should be tested on the bench and simulated with the
simulation model.
Figure 23: In-series resistor vs. capacitive load
4.7 PCB layouts
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible
to the power supply pins.
Application information
TSV630, TSV630A, TSV631, TSV631A
16/29
DocID15242 Rev 8
4.8 Macromodel
An accurate macromodel of the TSV630 and TSV631 is available on STMicroelectronics’
web site at www.st.com. This model is a trade-off between accuracy and complexity (that
is, time simulation) of the TSV63x operational amplifiers. It emulates the nominal
performances of a typical device within the specified operating conditions mentioned in the
datasheet. It also helps to validate a design approach and to select the right operational
amplifier, but it does not replace on-board measurements.
TSV630, TSV630A, TSV631, TSV631A
Package information
DocID15242 Rev 8
17/29
5 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
PINM \D
Package information
TSV630, TSV630A, TSV631, TSV631A
18/29
DocID15242 Rev 8
5.1 DFN6 1.2x1.3 package information
Figure 24: DFN6 1.2x1.3 package outline
PLANE
SEATING
0.05 C
8
C
PIN 1
TOP VIEW
SIDE VIEW
BOTTOM VIEW
D
E
e
b
A1
A
PIN#1 ID
LL3
_ \ s _ \ \\\\\\\ “ _
TSV630, TSV630A, TSV631, TSV631A
Package information
DocID15242 Rev 8
19/29
Table 8: DFN6 1.2x1.3 mechanical data
Ref
Dimensions
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.31
0.38
0.40
0.012
0.015
0.016
A1
0.00
0.02
0.05
0.000
0.001
0.002
b
0.15
0.18
0.25
0.006
0.007
0.010
c
0.05
0.002
D
1.20
0.047
E
1.30
0.051
e
0.40
0.016
L
0.475
0.525
0.575
0.019
0.021
0.023
L3
0.375
0.425
0.475
0.015
0.017
0.019
Figure 25: DFN6 1.2x1.3 recommended footprint
0.40
0.25
3 1
1.20
4 6
0.475
2 SEAT‘NG PLANE 2 4 wwuu 23 1:! D2 hflm PINfH ID
Package information
TSV630, TSV630A, TSV631, TSV631A
20/29
DocID15242 Rev 8
5.2 DFN8 2x2 package information
Figure 26: DFN8 2x2 package outline
Table 9: DFN8 2x2 mechanical data
Ref.
Dimensions
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.51
0.55
0.60
0.020
0.022
0.024
A1
0.05
0.002
A3
0.15
0.006
b
0.18
0.25
0.30
0.007
0.010
0.012
D
1.85
2.00
2.15
0.073
0.079
0.085
D2
1.45
1.60
1.70
0.057
0.063
0.067
E
1.85
2.00
2.15
0.073
0.079
0.085
E2
0.75
0.90
1.00
0.030
0.035
0.039
e
0.50
0.020
L
0.425
0.017
ddd
0.08
0.003
£80m .N 55mm.o [E 0 30mm 1 60mm I I JBLm I EEmV .O
TSV630, TSV630A, TSV631, TSV631A
Package information
DocID15242 Rev 8
21/29
Figure 27: DFN8 2x2 recommended footprint
Package information
TSV630, TSV630A, TSV631, TSV631A
22/29
DocID15242 Rev 8
5.3 SC70-6 (or SOT323-6) package information
Figure 28: SC70-6 (or SOT323-6) package outline
Table 10: SC70-6 (or SOT323-6) mechanical data
Ref
Dimensions
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.80
1.10
0.031
0.043
A1
0.10
0.004
A2
0.80
1.00
0.031
0.039
b
0.15
0.30
0.006
0.012
c
0.10
0.18
0.004
0.007
D
1.80
2.20
0.071
0.086
E
1.15
1.35
0.045
0.053
e
0.65
0.026
HE
1.80
2.40
0.071
0.094
L
0.10
0.40
0.004
0.016
Q1
0.10
0.40
0.004
0.016
105 4» 055
TSV630, TSV630A, TSV631, TSV631A
Package information
DocID15242 Rev 8
23/29
Figure 29: SC70-6 (or SOT323-6) recommended footprint
Package information
TSV630, TSV630A, TSV631, TSV631A
24/29
DocID15242 Rev 8
5.4 SOT23-6 package information
Figure 30: SOT23-6 package outline
Table 11: SOT23-6 mechanical data
Ref.
Dimensions
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.90
1.45
0.035
0.057
A1
0.10
0.004
A2
0.90
1.30
0.035
0.051
b
0.35
0.50
0.013
0.019
c
0.09
0.20
0.003
0.008
D
2.80
3.05
0.110
0.120
E
1.50
1.75
0.060
0.069
e
0.95
0.037
H
2.60
3.00
0.102
0.118
L
0.10
0.60
0.004
0.024
θ
0 °
10 °
0 °
10 °
TSV630, TSV630A, TSV631, TSV631A
Package information
DocID15242 Rev 8
25/29
5.5 SC70-5 (or SOT323-5) package information
Figure 31: SC70-5 (or SOT323-5) package outline
Table 12: SC70-5 (or SOT323-5) mechanical data
Ref.
Dimensions
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.80
1.10
0.032
0.043
A1
0.10
0.004
A2
0.80
0.90
1.00
0.032
0.035
0.039
b
0.15
0.30
0.006
0.012
c
0.10
0.22
0.004
0.009
D
1.80
2.00
2.20
0.071
0.079
0.087
E
1.80
2.10
2.40
0.071
0.083
0.094
E1
1.15
1.25
1.35
0.045
0.049
0.053
e
0.65
0.025
e1
1.30
0.051
L
0.26
0.36
0.46
0.010
0.014
0.018
<
SEATING PLANE
GAUGE PLANE
DIMENSIONS IN MM
SIDE VIEW
TOP VIEW
COPLANAR LEADS
Package information
TSV630, TSV630A, TSV631, TSV631A
26/29
DocID15242 Rev 8
5.6 SOT23-5 package information
Figure 32: SOT23-5 package outline
Table 13: SOT23-5 mechanical data
Ref.
Dimensions
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.90
1.20
1.45
0.035
0.047
0.057
A1
0.15
0.006
A2
0.90
1.05
1.30
0.035
0.041
0.051
B
0.35
0.40
0.50
0.014
0.016
0.020
C
0.09
0.15
0.20
0.004
0.006
0.008
D
2.80
2.90
3.00
0.110
0.114
0.118
D1
1.90
0.075
e
0.95
0.037
E
2.60
2.80
3.00
0.102
0.110
0.118
F
1.50
1.60
1.75
0.059
0.063
0.069
L
0.10
0.35
0.60
0.004
0.014
0.024
K
0 degrees
10 degrees
0 degrees
10 degrees
TSV630, TSV630A, TSV631, TSV631A
Ordering information
DocID15242 Rev 8
27/29
6 Ordering information
Table 14: Order codes
Order code
Temperature
range
Package
Packing
Marking
TSV630IQ1T
-40 °C to 125 °C
DFN6 1.2x1.3 (1)
Tape and reel
K4
TSV630IQ2T
DFN8 2x2
K1A
TSV630ILT
SΟΤ23-6
K108
TSV630ICT
SC70-6
K18
TSV631ILT
SΟΤ23-5
K109
TSV631ICT
SC70-5
K19
TSV630AILT
SΟΤ23-6
K141
TSV630AICT
SC70-6
K41
TSV631AILT
SΟΤ23-5
K142
TSV631AICT
SC70-5
K42
TSV631IYLT (2)
-40 °C to 125 °C
automotive grade
SΟΤ23-5
K10C
Notes:
(1)Package available on request. Please contact your local sales office for further information.
(2)Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according
to AEC Q001 and Q002 or equivalent.
Revision history
TSV630, TSV630A, TSV631, TSV631A
28/29
DocID15242 Rev 8
7 Revision history
Table 15: Document revision history
Date
Revision
Changes
19-Dec-2008
1
Initial release.
17-Aug-2009
2
Added root part numbers TSV630A and TSV631A on
cover page.
13-Aug-2012
3
Corrected the “Equivalent input noise voltage” values
in Table 3, Table 4, and Table 6.
Updated Figure 16: "Noise vs. frequency".
22-Mar-2013
4
Features: added “automotive qualification”
Added Related products
Description: updated
Updated titles of Figure 14 and Figure 15
Updated Section 4.4: "Shutdown function (TSV630)"
Updated Table 13: "Order codes"
02-Oct-2013
5
Added DFN6 1.2 x 1.3 package details
Table 3, Table 5, and Table 6: replaced DVio with
ΔVio/ΔT.
Figure 3: updated title
Updated disclaimer
21-Nov-2014
6
Related products: updated
Table 3, Table 4, Table 5, Table 6, and Table 7:
updated some of the “conditions”.
Figure 25: "DFN6 1.2x1.3 recommended footprint":
updated
Table 12: "SOT23-5 mechanical data": updated some
of the “inches” dimensions.
01-Jul-2015
7
Table 3, Table 5, and Table 6: VOH "min" values
changed to "max" values.
20-Sep-2016
8
Added "on request" to DFN6 1.2x1.3 silhouette.
Added DFN8 2x2 silhouette, pinout and package.
Table 1: "Absolute maximum ratings (AMR)": updated
thermal resistance junction-to-ambient parameter for
DFN8 2x2 package.
Table 14: "Order codes": added footnote concerning
package availability to DFN6 1.2x1.3, added
TSV630IQ2T.
TSV630, TSV630A, TSV631, TSV631A
DocID15242 Rev 8
29/29
IMPORTANT NOTICE PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics All rights reserved

Products related to this Datasheet

IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 1 CIRCUIT SOT23-6
IC OPAMP GP 1 CIRCUIT SC70-5
IC OPAMP GP 1 CIRCUIT SC70-6
IC OPAMP GP 1 CIRCUIT 6DFN
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 1 CIRCUIT SC70-6
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 1 CIRCUIT SC70-6
IC OPAMP GP 1 CIRCUIT SOT23-6
IC OPAMP GP 1 CIRCUIT SC70-6
IC OPAMP GP 1 CIRCUIT SOT23-6
IC OPAMP GP 1 CIRCUIT SC70-5
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 1 CIRCUIT SC70-5
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 1 CIRCUIT SOT23-6
IC OPAMP GP 1 CIRCUIT SC70-5
IC OPAMP GP 1 CIRCUIT SC70-6
IC OPAMP GP 1 CIRCUIT SOT23-6
IC OPAMP GP 1 CIRCUIT SC70-6
IC OPAMP GP 1 CIRCUIT SOT23-6
IC OPAMP GP 1 CIRCUIT SC70-5
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 1 CIRCUIT SC70-5
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 1 CIRCUIT 8DFN
IC OPAMP GP 1 CIRCUIT 8DFN
IC OPAMP GP 1 CIRCUIT 8DFN
IC OPAMP GP 1 CIRCUIT SOT23-5