L6472 Datasheet by STMicroelectronics

View All Related Products | Download PDF Datasheet
‘ ’l 1i(e.cugmemed xx
This is information on a product in full production.
March 2015 DocID022729 Rev 5 1/70
L6472
Fully integrated microstepping motor driver
Datasheet - production data
Features
Operating voltage: 8 - 45 V
7.0 A output peak current (3.0 A r.m.s.)
Low RDS(on) power MOSFETs
Programmable speed profile
Programmable power MOSFET slew rate
Up to 1/16 microstepping
Predictive current control with adaptive decay
Non dissipative current sensing
SPI interface
Low quiescent and standby currents
Programmable non dissipative overcurrent
protection on all power MOSFETs
Two levels of overtemperature protection
Applications
Bipolar stepper motor
Description
The L6472 device, realized in analog mixed
signal technology, is an advanced fully integrated
solution suitable for driving two-phase bipolar
stepper motors with microstepping. It integrates
a dual low RDS(on) DMOS full bridge with all of the
power switches equipped with an accurate on-
chip current sensing circuitry suitable for non
dissipative current control and overcurrent
protection. Thanks to a new current control,
a 1/16 microstepping is achieved through an
adaptive decay mode which outperforms
traditional implementations. The digital control
core can generate user defined motion profiles
with acceleration, deceleration, speed or target
position, easily programmed through a dedicated
register set.
All application commands and data registers,
including those used to set analog values
(i.e.: current control value, current protection trip
point, deadtime, etc.) are sent through a standard
5-Mbit/s SPI.
A very rich set of protections (thermal, low bus
voltage, overcurrent) makes the L6472 device
“bullet proof”, as required by the most demanding
motor control applications.
HTSSOP28 POWERSO36
Table 1. Device summary
Order codes Package Packing
L6472H HTSSOP28 Tube
L6472HTR HTSSOP28 Tape and reel
L6472PD POWERSO36 Tube
L6472PDTR POWERSO36 Tape and reel
www.st.com
Contents L6472
2/70 DocID022729 Rev 5
Contents
1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5 Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1 Device power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Logic I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.4 Microstepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Automatic full-step mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.5 Absolute position counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.6 Programmable speed profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.7 Motor control commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.7.1 Constant speed commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.7.2 Positioning commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.7.3 Motion commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.7.4 Stop commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.7.5 Step-clock mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.7.6 GoUntil and ReleaseSW commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.8 Internal oscillator and oscillator driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.8.1 Internal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.8.2 External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.9 Overcurrent detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
DocID022729 Rev 5 3/70
L6472 Contents
70
6.10 Undervoltage lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.11 Thermal warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.12 Reset and standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.13 External switch (SW pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.14 Programmable DMOS slew rate, deadtime and blanking time . . . . . . . . . 30
6.15 Integrated analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.16 Internal voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.17 BUSY\SYNC pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.17.1 BUSY operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.17.2 SYNC operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.18 FLAG pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7 Phase current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1 Predictive current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 Auto-adjusted decay mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.3 Auto-adjusted fast decay during the falling steps . . . . . . . . . . . . . . . . . . . 36
7.4 Torque regulation (output current amplitude regulation) . . . . . . . . . . . . . . 37
8 Serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9 Programming manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.1 Register and flag description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.1.1 ABS_POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.1.2 EL_POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.1.3 MARK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.1.4 SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.1.5 ACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.1.6 DEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.1.7 MAX_SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.1.8 MIN_SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.1.9 FS_SPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.1.10 TVAL_HOLD, TVAL_RUN, TVAL_ACC and TVAL_DEC . . . . . . . . . . . . 44
9.1.11 T_FAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.1.12 TON_MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.1.13 TOFF_MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.1.14 ADC_OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Contents L6472
4/70 DocID022729 Rev 5
9.1.15 OCD_TH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.1.16 STEP_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.1.17 ALARM_EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.1.18 CONFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.1.19 STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.2 Application commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.2.1 Command management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.2.2 NOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.2.3 SetParam (PARAM, VALUE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.2.4 GetParam (PARAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.2.5 Run (DIR, SPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.2.6 StepClock (DIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.2.7 Move (DIR, N_STEP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.2.8 GoTo (ABS_POS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.2.9 GoTo_DIR (DIR, ABS_POS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.2.10 GoUntil (ACT, DIR, SPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.2.11 ReleaseSW (ACT, DIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.2.12 GoHome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.2.13 GoMark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.2.14 ResetPos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.2.15 ResetDevice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.2.16 SoftStop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.2.17 HardStop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.2.18 SoftHiZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.2.19 HardHiZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.2.20 GetStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.1 HTSSOP28 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.2 POWERSO36 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
DocID022729 Rev 5 5/70
L6472 List of tables
70
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 3. Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 4. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 5. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 6. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 7. Typical application values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 8. CL values according to external oscillator frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 9. Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 10. EL_POS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 11. MIN_SPEED register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 12. Torque regulation by TVAL_HOLD, TVAL_ACC, TVAL_DEC and TVAL_RUN
registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 13. T_FAST register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 14. Maximum fast decay times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 15. Minimum ON time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 16. Minimum OFF time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 17. ADC_OUT value and torque regulation feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 18. Overcurrent detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 19. STEP_MODE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 20. Step mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 21. SYNC output frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 22. SYNC signal source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 23. ALARM_EN register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 24. CONFIG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 25. Oscillator management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 26. External switch hard stop interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 27. Overcurrent event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 28. Programmable power bridge output slew rate values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 29. External torque regulation enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 30. Switching period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 31. STATUS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 32. STATUS register DIR bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 33. STATUS register MOT_STATUS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 34. Application commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 35. NOP command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 36. SetParam command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 37. GetParam command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 38. Run command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 39. StepClock command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 40. Move command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 41. GoTo command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 42. GoTo_DIR command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 43. GoUntil command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 44. ReleaseSW command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 45. GoHome command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 46. GoMark command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 47. ResetPos command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
List of tables L6472
6/70 DocID022729 Rev 5
Table 48. ResetDevice command structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 49. SoftStop command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 50. HardStop command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 51. SoftHiZ command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 52. HardHiZ command structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 53. GetStatus command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 54. HTSSOP28 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 55. POWERSO36 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 56. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
DocID022729 Rev 5 7/70
L6472 List of figures
70
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2. HTSSOP28 pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 3. POWERSO36 pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 4. Bipolar stepper motor control application using the L6472 . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 5. Charge pump circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 6. Normal mode and microstepping (16 microsteps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 7. Automatic full-step switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 8. Constant speed command examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 9. Positioning command examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 10. Motion command examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 11. OSCIN and OSCOUT pin configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 12. External switch connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 13. Internal 3 V linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 14. Predictive current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 15. Non-predictive current control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 16. Adaptive decay - fast decay tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 17. Adaptive decay switch from normal to slow + fast decay mode and vice-versa . . . . . . . . . 36
Figure 18. Fast decay tuning during the falling steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 19. SPI timings diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 20. Daisy chain configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 21. Command with 3-byte argument. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 22. Command with 3-byte response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 23. Command response aborted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 24. HTSSOP28 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 25. POWERSO36 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Block diagram L6472
8/70 DocID022729 Rev 5
1 Block diagram
Figure 1. Block diagram
$0Y
9
9ROWDJH5HJ
$'&
([W2VFGULYHU
&ORFNJHQ
0+]
2VFLOODWRU
&KDUJH
SXPS
9''
63, 5HJLVWHUV
&RQWURO
/RJLF
&XUUHQW'$&V
&RPSDUDWRUV
7HPSHUDWXUH
VHQVLQJ
&XUUHQW
VHQVLQJ
67%<567
)/$*
&6
&.
6'2
6',
%86<6<1&
6:
67&.
'*1'
9'' 26&,1 26 722%93&*(591,&'$782&
$*1'
3*1'
3*1'
96$
96$
287$
287$
96%
96%
287%
287%
+6 $
/6 $
+6 $
/6 $
+6 %
/6 %
+6 %
/6 %
+6 $
/6 $
+6 $
/6 $
+6 %
/6 %
+6 %
/6 %
9''
9ERRW 9ERRW
9ERRW 9ERRW
DocID022729 Rev 5 9/70
L6472 Electrical data
70
2 Electrical data
2.1 Absolute maximum ratings
2.2 Recommended operating conditions
Table 2. Absolute maximum ratings
Symbol Parameter Test condition Value Unit
VDD Logic interface supply voltage 5.5 V
VS Motor supply voltage VSA = VSB = VS 48 V
VGND, diff Differential voltage between AGND, PGND and DGND ±0.3 V
Vboot Bootstrap peak voltage 55 V
VREG Internal voltage regulator output pin and logic supply voltage 3.6 V
VADCIN Integrated ADC input voltage range (ADCIN pin) -0.3 to +3.6 V
VOSC OSCIN and OSCOUT pin voltage range -0.3 to +3.6 V
Vout_diff Differential voltage between VSA, OUT1A, OUT2A, PGND and
VSB, OUT1B, OUT2B, PGND pins VSA = VSB = VS 48 V
VLOGIC Logic inputs voltage range -0.3 to +5.5 V
Iout(1) R.m.s. output current 3 A
Iout_peak(1) Pulsed output current TPULSE < 1 ms 7 A
TOP Operating junction temperature -40 to 150 °C
Ts Storage temperature range -55 to 150 °C
Ptot Total power dissipation (TA = 25 °C) (2) 5W
1. Maximum output current limit is related to metal connection and bonding characteristics. Actual limit must satisfy maximum
thermal dissipation constraints.
2. HTSSOP28 mounted on the EVAL6472H.
Table 3. Recommended operating conditions
Symbol Parameter Test condition Value Unit
VDD Logic interface supply voltage
3.3 V logic outputs 3.3 V
5 V logic outputs 5
VS Motor supply voltage VSA = VSB = VS 8 45 V
Vout_diff
Differential voltage between VSA, OUT1A, OUT2A,
PGND and VSB, OUT1B, OUT2B, PGND pins VSA = VSB = VS 45 V
VREG,in Logic supply voltage VREG voltage imposed by
external source 3.2 3.3 V
VADC Integrated ADC input voltage (ADCIN pin) 0 VREG V
Electrical data L6472
10/70 DocID022729 Rev 5
2.3 Thermal data
Table 4. Thermal data
Symbol Parameter Package Typ. Unit
RthJA Thermal resistance junction ambient
HTSSOP28(1) 22
°C/W
POWERSO36(2) 12
1. HTSSOP28 mounted on the EVAL6472H Rev 1.0 board: four-layer FR4 PCB with a dissipating copper surface of about 40
cm2 on each layer and 15 via holes below the IC.
2. POWERSO36 mounted on the EVAL6472PD Rev 1.0 board: four-layer FR4 PCB with a dissipating copper surface of about
40 cm2 on each layer and 22 via holes below the IC.
DocID022729 Rev 5 11/70
L6472 Electrical characteristics
70
3 Electrical characteristics
VSA = VSB = 36 V; VDD = 3.3 V; internal 3 V regulator; TJ = 25 °C, unless otherwise
specified.
Table 5. Electrical characteristics
Symbol Parameter Test condition Min. Typ. Max. Unit
General
VSthOn VS UVLO turn-on threshold 7.5 8.2 8.9 V
VSthOff V
S UVLO turn-off threshold 6.6 7.2 7.8 V
VSthHyst VS UVLO threshold hysteresis 0.7 1 1.3 V
Iq Quiescent motor supply current Internal oscillator selected;
VREG = 3.3 V ext; CP floating 0.5 0.65 mA
Tj(WRN) Thermal warning temperature 130 °C
Tj(SD) Thermal shutdown temperature 160 °C
Charge pump
Vpump Voltage swing for charge pump
oscillator 10 V
fpump,min Minimum charge pump oscillator
frequency(1) 660 kHz
fpump,max Maximum charge pump oscillator
frequency(1) 800 kHz
Iboot Average boot current fsw,A = fsw,B = 15.6 kHz
POW_SR = ‘10’ 1.1 1.4 mA
Output DMOS transistor
RDS(on)
High-side switch on-resistance
Tj = 25 °C, Iout = 3 A 0.37
Tj = 125 °C,(2) Iout = 3 A 0.51
Low-side switch on-resistance
Tj = 25 °C, Iout = 3 A 0.18
Tj = 125 °C,(2) Iout = 3 A 0.23
IDSS Leakage current
OUT = VS 3.1
mA
OUT = GND -0.3
tr Rise time(3)
POW_SR = '00', Iout = +1 A 100
ns
POW_SR = '00', Iout = -1 A 80
POW_SR = ‘11’, Iout = ±1 A 100
POW_SR = ‘10’, Iout = ±1 A 200
POW_SR = ‘01’, Iout = ±1 A 300
Electrical characteristics L6472
12/70 DocID022729 Rev 5
tf Fall time (3)
POW_SR = '00'; Iout = +1 A 90
ns
POW_SR = '00'; Iout = -1 A 110
POW_SR = ‘11’, Iout = ±1 A 110
POW_SR = ‘10’, Iout = ±1 A 260
POW_SR = ‘01’, Iload = ±1 A 375
SRout_r Output rising slew rate
POW_SR = '00', Iout = +1 A 285
V/µs
POW_SR = '00', Iout = -1 A 360
POW_SR = ‘11’, Iout = ±1 A 285
POW_SR = ‘10’, Iout = ±1 A 150
POW_SR = ‘01’, Iout = ±1 A 95
SRout_f Output falling slew rate
POW_SR = '00', Iout = +1 A 320
V/µs
POW_SR = '00', Iout = -1 A 260
POW_SR = ‘11’, Iout = ±1 A 260
POW_SR = ‘10’, Iout = ±1 A 110
POW_SR = ‘01’, Iout = ±1 A 75
Deadtime and blanking
tDT Deadtime(1)
POW_SR = '00' 250
ns
POW_SR = ‘11’, fOSC = 16 MHz 375
POW_SR = ‘10’, fOSC = 16 MHz 625
POW_SR = ‘01’, fOSC = 16 MHz 875
tblank Blanking time(1)
POW_SR = '00' 250
ns
POW_SR = ‘11’, fOSC = 16 MHz 375
POW_SR = ‘10’, fOSC = 16 MHz 625
POW_SR = ‘01’, fOSC = 16 MHz 875
Source-drain diodes
VSD,HS High-side diode forward ON voltage Iout = 1 A 1 1.1 V
VSD,LS Low-side diode forward ON voltage Iout = 1 A 1 1.1 V
trrHS
High-side diode reverse recovery
time Iout = 1 A 30 ns
trrLS Low-side diode reverse recovery time Iout = 1 A 100 ns
Logic inputs and outputs
VIL Low logic level input voltage 0.8 V
VIH High logic level input voltage 2 V
IIH High logic level input current(4) VIN = 5 V 1 µA
Table 5. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
DocID022729 Rev 5 13/70
L6472 Electrical characteristics
70
IIL Low logic level input current(5) VIN = 0 V -1 µA
VOL Low logic level output voltage (6) VDD = 3.3 V, IOL = 4 mA 0.3
V
VDD = 5 V, IOL = 4 mA 0.3
VOH High logic level output voltage
VDD = 3.3 V, IOH = 4 mA 2.4
V
VDD = 5 V, IOH = 4 mA 4.7
RPU RPD CS pull-up and STBY pull-down
resistors CS = GND; STBY/RST = 5 V 335 430 565 k
Ilogic Internal logic supply current 3.3 V VREG externally supplied,
internal oscillator 3.7 4.3 mA
Ilogic,STBY Standby mode internal logic supply
current 3.3 V VREG externally supplied 2 2.5 µA
fSTCK Step-clock input frequency 2 MHz
Internal oscillator and external oscillator driver
fosc,i Internal oscillator frequency Tj = 25 °C, VREG = 3.3 V -3% 16 +3% MHz
fosc,e Programmable external oscillator
frequency 8 32 MHz
VOSCOUTH OSCOUT clock source high level
voltage
Internal oscillator 3.3 V VREG
externally supplied; IOSCOUT = 4 mA 2.4 V
VOSCOUTL OSCOUT clock source low level
voltage
Internal oscillator 3.3 V VREG
externally supplied; IOSCOUT = 4 mA 0.3 V
trOSCOUT
tfOSCOUT
OSCOUT clock source rise and fall
time Internal oscillator 20 ns
textosc Internal to external oscillator
switching delay 3 ms
tintosc
External to internal oscillator
switching delay 1.5 µs
SPI
fCK,MAX Maximum SPI clock frequency(7) 5 MHz
trCK
tfCK SPI clock rise and fall time(7) CL = 30 pF 25 ns
thCK
tlCK
SPI clock high and low time(7) 75 ns
tsetCS Chip select setup time(7) 350 ns
tholCS Chip select hold time(7) 10 ns
tdisCS De-select time(7) 800 ns
tsetSDI Data input setup time(7) 25 ns
tholSDI Data input hold time(7) 20 ns
tenSDO Data output enable time(7) 38 ns
Table 5. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Electrical characteristics L6472
14/70 DocID022729 Rev 5
tdisSDO Data output disable time(7) 47 ns
tvSDO Data output valid time(7) 57 ns
tholSDO Data output hold time(7) 37 ns
Switch input (SW)
RPUSW SW input pull-up resistance SW = GND 60 85 110 k
Current control
ISTEP,max
Max. programmable reference
current 4 A
ISTEP,min Min. programmable reference current 31 mA
Overcurrent protection
IOCD,MAX
Maximum programmable overcurrent
detection threshold OCD_TH = ‘1111’ 6 A
IOCD,MIN
Minimum programmable overcurrent
detection threshold OCD_TH = ‘0000’ 0.37
5 A
IOCD,RES
Programmable overcurrent detection
threshold resolution
0.37
5 A
tOCD,Flag OCD to flag signal delay time dIout/dt = 350 A/µs 650 1000 ns
tOCD,SD OCD to shutdown delay time dIout/dt = 350 A/µs POW_SR = '10' 600 µs
Standby
IqSTBY Quiescent motor supply current in
standby conditions
VS = 8 V 26 34
µA
VS = 36 V 30 36
tSTBY,min Minimum standby time 10 µs
tlogicwu Logic power-on and wake-up time 38 45 µs
tcpwu
Charge pump power-on and wake-up
time
Power bridges disabled, Cp = 10 nF,
Cboot = 220 nF 650 µs
Internal voltage regulator
VREG Voltage regulator output voltage 2.9 3 3.2 V
IREG Voltage regulator output current 40 mA
VREG, drop Voltage regulator output voltage drop IREG = 40 mA 50 mV
IREG,STBY Voltage regulator standby output
current 10 mA
Table 5. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
DocID022729 Rev 5 15/70
L6472 Electrical characteristics
70
Integrated analog-to-digital converter
NADC Analog-to-digital converter resolution 5 bit
VADC,ref Analog-to-digital converter reference
voltage VREG V
fS
Analog-to-digital converter sampling
frequency
fOSC/
512 kHz
1. Accuracy depends on oscillator frequency accuracy.
2. Tested at 25 °C in a restricted range and guaranteed by characterization.
3. Rise and fall time depends on motor supply voltage value. Refer to SRout values in order to evaluate the actual rise and fall
time.
4. Not valid for the STBY/RST pin which has an internal pull-down resistor.
5. Not valid for the SW and CS pins which have an internal pull-up resistor.
6. FLAG, BUSY and SYNC open drain outputs included.
7. See Figure 19: SPI timings diagram on page 38 for details.
Table 5. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
z. OWZA ONE 11 mm —m E —————— I .. m sraw E I | E “CK W E I | a m ADUNE I I n 6 WE ' . ,. —W 05(0UI E I | n SDI AWE I I E (K c» E I I E m wow E | | j VDD E ' I V” ______ El vsa WE 3| own cum E AM0237BV1 I— a, l :I ' :I I :I I :I : :I j ' :I I :I I | :I ' :I ' :I I :I I ' :I ' :I I :I I :I I ' :I ' :I . - ‘
Pin connection L6472
16/70 DocID022729 Rev 5
4 Pin connection
Figure 2. HTSSOP28 pin connection (top view)
345
Figure 3. POWERSO36 pin connection (top view)























1(/%
065"
065"
74"
74"
45#:345
48
"%$*/
04$*/
04$065
065#
"(/%
$1
7#005
74#
74#
73&(
065#
065"
065"
74"
74"
45$,
'-"(
$4
#64:=4:/$
&1"% %(/%
4%*
065#
$,
4%0
7%%
74#
74#
1(/%
065#
DocID022729 Rev 5 17/70
L6472 Pin connection
70
Pin list
Table 6. Pin description
Number
Name Type Function
POWERSO HTSSOP
24 17 VDD Power Logic output supply voltage (pull-up reference)
9 6 VREG Power
Internal 3 V voltage regulator output and 3.3 V
external logic supply
10 7 OSCIN Analog input
Oscillator pin 1. To connect an external oscillator or
clock source. If this pin is unused, it should be left
floating.
11 8 OSCOUT Analog output
Oscillator pin 2. To connect an external oscillator.
When the internal oscillator is used this pin can
supply 2/4/8/16 MHz. If this pin is unused, it should
be left floating.
13 10 CP Output Charge pump oscillator output
14 11 Vboot Supply voltage
Bootstrap voltage needed for driving the high-side
power DMOS of both bridges (A and B).
8 5 ADCIN Analog input Internal analog-to-digital converter input
4, 5 2
VSA Power supply
Full bridge A power supply pin. It must be connected
to VSB.
33, 34 26
15, 16 12
VSB Power supply
Full bridge B power supply pin. It must be connected
to VSA.
22, 23 16
127
PGND Ground Power ground pin
19 13
2, 3 1 OUT1A Power output Full bridge A output 1
35, 36 28 OUT2A Power output Full bridge A output 2
17, 18 14 OUT1B Power output Full bridge B output 1
20, 21 15 OUT2B Power output Full bridge B output 2
12 9 AGND Ground Analog ground.
7 4 SW Logical input
External switch input pin. If not used the pin should
be connected to VDD.
28 21 DGND Ground Digital ground
29 22 BUSY\SYNC Open drain output
By default, this BUSY pin is forced low when the
device is performing a command. Otherwise the pin
can be configured to generate a synchronization
signal.
25 18 SDO Logic output Data output pin for serial interface
27 20 SDI Logic input Data input pin for serial interface
26 19 CK Logic input Serial interface clock
30 23 CS Logic input Chip select input pin for serial interface
Pin connection L6472
18/70 DocID022729 Rev 5
31 24 FLAG Open drain output
Status flag pin. An internal open drain transistor can
pull the pin to GND when a programmed alarm
condition occurs (step loss, OCD, thermal pre-
warning or shutdown, UVLO, wrong command, non-
performable command).
6 3 STBY\RST Logic input
Standby and reset pin. LOW logic level resets the
logic and puts the device into standby mode. If not
used, it should be connected to VDD
32 25 STCK Logic input Step-clock input
EPAD Exposed pad Ground Internally connected to PGND, AGND and DGND
pins
Table 6. Pin description (continued)
Number
Name Type Function
POWERSO HTSSOP
V: (av , 45v: Cafi (m; van minor 0 mm AM02379v1
DocID022729 Rev 5 19/70
L6472 Typical applications
70
5 Typical applications
Figure 4. Bipolar stepper motor control application using the L6472
Table 7. Typical application values
Name Value
CVS 220 nF
CVSPOL 100 µF
CREG 100 nF
CREGPOL 47 µF
CDD 100 nF
CDDPOL 10 µF
D1 Charge pump diodes
CBOOT 220 nF
CFLY 10 nF
RPU 39 k
RSW 100
CSW 10 nF
FLAG BUSY STBY\RST
Functional description L6472
20/70 DocID022729 Rev 5
6 Functional description
6.1 Device power-up
At the end of power-up, the device state is the following:
Registers are set to default
Internal logic is driven by the internal oscillator and a 2 MHz clock is provided by the
OSCOUT pin
Bridges are disabled (High Z)
UVLO bit in the STATUS register is forced low (fail condition)
FLAG output is forced low.
During power-up the device is under reset (all logic IO disabled and power bridges in high-
impedance state) until the following conditions are satisfied:
VS is greater than VSthOn
VREG is greater than VREGth = 2.8 V (typ.)
Internal oscillator is operative.
Any motion command causes the device to exit from High Z state (HardStop and SoftStop
included).
6.2 Logic I/O
Pins CS, CK, SDI, STCK, SW and STBY\RST are TTL/CMOS 3.3 V - 5 V compatible logic
inputs.
Pin SDO is a TTL/CMOS compatible logic output. The VDD pin voltage sets the logic output
pin voltage range; when it is connected to VREG or a 3.3 V external supply voltage, the
output is 3.3 V compatible. When VDD is connected to a 5 V supply voltage, SDO is 5 V
compatible.
VDD is not internally connected to VREG
, an external connection is always needed.
A 10 µF capacitor should be connected to the VDD pin in order to obtain a proper operation.
Pins FLAG and BUSY\SYNC are open drain outputs.
6.3 Charge pump
To ensure the correct driving of the high-side integrated MOSFETs, a voltage higher than
the motor power supply voltage needs to be applied to the Vboot pin. The high-side gate
driver supply voltage Vboot is obtained through an oscillator and a few external components
realizing a charge pump (see Figure 5).
m mgn side gme duvevs VD” CHARGE PUMP OSULLATOR Amman“
DocID022729 Rev 5 21/70
L6472 Functional description
70
Figure 5. Charge pump circuitry
6.4 Microstepping
The driver is able to divide the single step into up to 16 microsteps. Step mode can be
programmed by the STEP_SEL parameter in the STEP_MODE register (see Table 20 on
page 47).
Step mode can only be changed when bridges are disabled. Every time step mode is
changed, the electrical position (i.e. the point of microstepping sine wave that is generated)
is reset to zero, and the absolute position counter value (see Section 6.5) becomes
meaningless.
Reset pOSIIIon Normal drIvIng PHASE A cunenl PHASE I: cuvrcm Reset posmon MIcrosteppIng PHASE Aetment PHASE Bcuncnl | I | I step I I step 2 I step 3| step 4 I step I step I I step 2| step a I step 4| step I I Is Is steps steps ta sIeps I Is steps microsteps AMozsstvt
Functional description L6472
22/70 DocID022729 Rev 5
Figure 6. Normal mode and microstepping (16 microsteps)
Automatic full-step mode
When motor speed is greater than a programmable full-step speed threshold, the L6472
switches automatically to full-step mode (see Figure 7); the driving mode returns to
microstepping when motor speed decreases below the full-step speed threshold. The full-
step speed threshold is set through the FS_SPD register (see Section 9.1.9 on page 44).
Figure 7. Automatic full-step switching
1IBTF"
1IBTF#
/YS /YS
'VMM4UFQ
P4UFQQJOH P4UFQQJOH
*QFBL TJOSY*QFBL
DocID022729 Rev 5 23/70
L6472 Functional description
70
6.5 Absolute position counter
An internal 22-bit register (ABS_POS) keeps track of the motor motion according to the
selected step mode; the stored value unit is equal to the selected step mode (full, half,
quarter, etc.). The position range is from -221 to +221-1 (µ) steps (see Section 9.1.1 on page
41).
6.6 Programmable speed profiles
The user can easily program a customized speed profile, independently defining
acceleration, deceleration, maximum and minimum speed values through the ACC, DEC,
MAX_SPEED and MIN_SPEED registers respectively (see Section 9.1.5 on page 42, 9.1.6
on page 42, 9.1.7 on page 43 and 9.1.8 on page 43).
When a command is sent to the device, the integrated logic generates the microstep
frequency profile that performs a motor motion compliant to speed profile boundaries.
All acceleration parameters are expressed in step/tick2 and all speed parameters are
expressed in step/tick; the unit of measurement does not depend on selected step mode.
Acceleration and deceleration parameters range from 2-40 to (212-2) • 2-40 step/tick2
(equivalent to 14.55 to 59590 step/s2).
Minimum speed parameter ranges from 0 to (212-1) • 2-24 step/tick (equivalent to 0 to 976.3
step/s).
Maximum speed parameter ranges from 2-18 to (210-1) • 2-18 step/tick (equivalent to 15.25 to
15610 step/s).
6.7 Motor control commands
The L6472 can accept different types of commands:
constant speed commands (Run, GoUntil, ReleaseSW)
absolute positioning commands (GoTo, GoTo_DIR, GoHome, GoMark)
motion commands (Move)
stop commands (SoftStop, HardStop, SoftHiz, HardHiz).
For detailed command descriptions refer to Section 9.2 on page 54.
Speed (step 'vequency) spas RUMSPDZ‘FW) \ RMMSPDS‘ FW) WW" ---------------------------- mm "4— Rumspmawy Vwmum weed Mme SPD4 AM02332v1
Functional description L6472
24/70 DocID022729 Rev 5
6.7.1 Constant speed commands
A constant speed command produces a motion in order to reach and maintain a user
defined target speed starting from the programmed minimum speed (set in the MIN_SPEED
register) and with the programmed acceleration/deceleration value (set in the ACC and DEC
registers). A new constant speed command can be requested anytime.
Figure 8. Constant speed command examples
6.7.2 Positioning commands
An absolute positioning command produces a motion in order to reach a user-defined
position that is sent to the device together with the command. The position can be reached
by performing the minimum path (minimum physical distance) or forcing a direction (see
Figure 9).
The performed motor motion is compliant to programmed speed profile boundaries
(acceleration, deceleration, minimum and maximum speed).
Note that with some speed profiles or positioning commands, the deceleration phase can
start before the maximum speed is reached.
Fovwmd due-cue" 0 0 mm! Pvesem posmon WSW" mum“: pqummefl ‘ DEcazmoN Amaznmqw , fl pmgnmm p 5%"? chELEnmoN mm Tame! Tavgel pus-"on posmon 2‘ 2‘ 2| 2‘ -2 +2 1 -2 +2 -1 cow-raga p05) GoTonRaarget pDS‘FW) AMHZSBBVI 5m: sum: Mama mam mum: , mums mm, mmlm Mama pmuvammeu ‘ mm 1 mm mm m m. 1 - nw‘cmnonlucnchmhonDram” ‘ : mama r mmummmmpm 1 ‘ mm mm ‘5 mm ‘ m m AMozauw
DocID022729 Rev 5 25/70
L6472 Functional description
70
Figure 9. Positioning command examples
6.7.3 Motion commands
Motion commands produce a motion in order to perform a user-defined number of
microsteps in a user-defined direction that are sent to the device together with the command
(see Figure 10).
The performed motor motion is compliant to programmed speed profile boundaries
(acceleration, deceleration, minimum and maximum speed).
Note that with some speed profiles or motion commands, the deceleration phase can start
before the maximum speed is reached.
Figure 10. Motion command examples
6.7.4 Stop commands
A stop command forces the motor to stop. Stop commands can be sent anytime.
The SoftStop command causes the motor to decelerate with a programmed deceleration
value until the MIN_SPEED value is reached and then stops the motor maintaining the rotor
position (a holding torque is applied).
Functional description L6472
26/70 DocID022729 Rev 5
The HardStop command stops the motor instantly, ignoring deceleration constraints and
maintaining the rotor position (a holding torque is applied).
The SoftHiZ command causes the motor to decelerate with a programmed deceleration
value until the MIN_SPEED value is reached and then forces the bridges into high-
impedance state (no holding torque is present).
The HardHiZ command instantly forces the bridges into high-impedance state (no holding
torque is present).
6.7.5 Step-clock mode
In step-clock mode the motor motion is defined by the step-clock signal applied to the STCK
pin.
At each step-clock rising edge, the motor is moved by one microstep in the programmed
direction and the absolute position is consequently updated.
When the system is in step-clock mode the SCK_MOD flag in the STATUS register is raised,
the SPEED register is set to zero and the motor status is considered stopped whatever the
STCK signal frequency (the MOT_STATUS parameter in the STATUS register equal to
g00h).
6.7.6 GoUntil and ReleaseSW commands
In most applications the power-up position of the stepper motor is undefined, so an
initialization algorithm driving the motor to a known position is necessary.
The GoUntil and ReleaseSW commands can be used in combination with external switch
input (see Section 6.13 on page 30) to easily initialize the motor position.
The GoUntil command makes the motor run at the target constant speed until the SW input
is forced low (falling edge). When this event occurs, one of the following actions can be
performed:
ABS_POS register is set to zero (home position) and the motor decelerates to zero
speed (as a SoftStop command)
ABS_POS register value is stored in the MARK register and the motor decelerates to
zero speed (as a SoftStop command).
If the SW_MODE bit of the CONFIG register is set to e0f, the motor does not decelerate but
it immediately stops (as a HardStop command).
The ReleaseSW command makes the motor run at the programmed minimum speed until
the SW input is forced high (rising edge). When this event occurs, one of the following
actions can be performed:
ABS_POS register is set to zero (home position) and the motor immediately stops
(as a HardStop command)
ABS_POS register value is stored in the MARK register and the motor immediately
stops (as a HardStop command).
If the programmed minimum speed is less than 5 step/s, the motor is driven at 5 step/s.
DocID022729 Rev 5 27/70
L6472 Functional description
70
6.8 Internal oscillator and oscillator driver
The control logic clock can be supplied by the internal 16-MHz oscillator, an external
oscillator (crystal or ceramic resonator) or a direct clock signal.
These working modes can be selected by the EXT_CLK and OSC_SEL parameters in the
CONFIG register (see Table 25 on page 50).
At power-up the device starts using the internal oscillator and provides a 2-MHz clock signal
on the OSCOUT pin.
Warning: In any case, before changing clock source configuration,
a hardware reset is mandatory. Switching to different clock
configurations during operation could cause unexpected
behavior.
6.8.1 Internal oscillator
In this mode the internal oscillator is activated and OSCIN is unused. If the OSCOUT clock
source is enabled, the OSCOUT pin provides a 2, 4, 8 or 16-MHz clock signal (according to
the OSC_SEL value); otherwise it is unused (see Figure 11).
6.8.2 External clock source
Two types of external clock source can be selected: crystal/ceramic resonator or direct clock
source. Four programmable clock frequencies are available for each external clock source:
8, 16, 24 and 32 MHz.
When an external crystal/resonator is selected, the OSCIN and OSCOUT pins are used to
drive the crystal/resonator (see Figure 11). The crystal/resonator and load capacitors (CL)
must be placed as close as possible to the pins. Refer to Tabl e 8 for the choice of the load
capacitor value according to the external oscillator frequency.
If a direct clock source is used, it must be connected to the OSCIN pin, and the OSCOUT
pin supplies the inverted OSCIN signal (see Figure 11).
Table 8. CL values according to external oscillator frequency
Crystal/resonator freq. (1)
1. First harmonic resonance frequency.
CL (2)
2. Lower ESR value allows the driving of greater load capacitors.
8 MHz 25 pF (ESRmax = 80 )
16 MHz 18 pF (ESRmax = 50 )
24 MHz 15 pF (ESRmax = 40 )
32 MHz 10 pF (ESRmax = 40 )
EXT7CLK _ i EXT7CLK _ mamrv W, OSC,SEL l |_J I_l |_l |_l 05ch 05mm :1an oscour Externa‘ oscHlamv Exxemal
Functional description L6472
28/70 DocID022729 Rev 5
Figure 11. OSCIN and OSCOUT pin configurations
Note: When OSCIN is UNUSED, it should be left floating.
When OSCOUT is UNUSED it should be left floating.
6.9 Overcurrent detection
When the current in any of the power MOSFETs exceeds a programmed overcurrent
threshold, the STATUS register OCD flag is forced low until the overcurrent event expires
and a GetStatus command is sent to the IC (see Section 9.1.19 on page 52 and 9.2.20 on
page 63). The overcurrent event expires when all the power MOSFET currents fall below
the programmed overcurrent threshold.
The overcurrent threshold can be programmed through the OCD_TH register in one of 16
available values ranging from 375 mA to 6 A with steps of 375 mA (see Table 18 on
page 47).
It is possible to set if an overcurrent event causes or not the MOSFET turn-off (bridges in
high-impedance status) acting on the OC_SD bit in the CONFIG register (see
Section 9.1.18 on page 49). The OCD flag in the STATUS register is raised anyway
(see Table 26 on page 50).
When the IC outputs are turned off by an OCD event, they cannot be turned on until the
OCD flag is released by a GetStatus command.
DocID022729 Rev 5 29/70
L6472 Functional description
70
Warning: The overcurrent shutdown is a critical protection feature. It is
not recommended to disable it.
6.10 Undervoltage lockout (UVLO)
The L6472 provides motor supply UVLO protection. When the motor supply voltage falls
below the VSthOff threshold voltage, the STATUS register UVLO flag is forced low. When
a GetStatus command is sent to the IC, and the undervoltage condition expires, the UVLO
flag is released (see Section 9.1.19 on page 52 and 9.2.20 on page 63). The undervoltage
condition expires when the motor supply voltage goes over the VSthOn threshold voltage.
When the device is in the undervoltage condition, no motion command can be performed.
The UVLO flag is forced low by logic reset (power-up included) even if no UVLO condition is
present.
6.11 Thermal warning and thermal shutdown
An internal sensor allows the L6472 to detect when the device internal temperature exceeds
a thermal warning or an overtemperature threshold.
When the thermal warning threshold (Tj(WRN)) is reached, the TH_WRN bit in the STATUS
register is forced low (see Section 9.1.19) until the temperature decreases below Tj(WRN)
and a GetStatus command is sent to the IC (see Section 9.1.19 and 9.2.20).
When the thermal shutdown threshold (Tj(OFF)) is reached, the device goes into the thermal
shutdown condition: the TH_SD bit in the STATUS register is forced low, the power bridges
are disabled bridges in high-impedance state and the HiZ bit in the STATUS register is
raised (see Section 9.1.19).
The thermal shutdown condition only expires when the temperature goes below the thermal
warning threshold (Tj(WRN)).
On exiting the thermal shutdown condition, the bridges are still disabled (HiZ flag high);
whichever motion command makes the device exit from High Z state (HardStop and
SoftStop included).
6.12 Reset and standby
The device can be reset and put into standby mode through a dedicated pin. When the
STBY\RST pin is driven low, the bridges are left open (High Z state), the internal charge
pump is stopped, the SPI interface and control logic are disabled, and the internal 3 V
voltage regulator maximum output current is reduced to IREG,STBY; as a result, the L6472
heavily reduces the power consumption. At the same time the register values are reset to
default and all protection functions are disabled. STBY\RST input must be forced low at
least for tSTBY,min in order to ensure the complete switch to standby mode.
On exiting standby mode, as well as for IC power-up, a delay of up to tlogicwu must be given
before applying a new command to allow proper oscillator and logic startup and a delay of
up to tcpwu must be given to allow the charge pump startup.
Emema‘ 5mm AMOzaBEw
Functional description L6472
30/70 DocID022729 Rev 5
On exiting standby mode the bridges are disabled (HiZ flag high) and whichever motion
command causes the device to exit High Z state (HardStop and SoftStop included).
Warning: It is not recommended to reset the device when outputs are
active. The device should be switched to high-impedance
state before being reset.
6.13 External switch (SW pin)
The SW input is internally pulled-up to VDD and detects if the pin is open or connected to
ground (see Figure 12).
The SW_F bit of the STATUS register indicates if the switch is open (‘0’) or closed (‘1’) (see
Section 9.1.19 on page 52); the bit value is refreshed at every system clock cycle (125 ns).
The SW_EVN flag of the STATUS register is raised when a switch turn-on event (SW input
falling edge) is detected (see Section 9.1.19). A GetStatus command releases the SW_EVN
flag (see Section 9.2.20 on page 63).
By default a switch turn-on event causes a HardStop interrupt (SW_MODE bit of the
CONFIG register set to ‘0’). Otherwise (SW_MODE bit of the CONFIG register set to ‘1’),
switch input events do not cause interrupts and the switch status information is at the user’s
disposal (see Table 26 on page 50).
The switch input can be used by the GoUntil and ReleaseSW commands as described in
Section 9.2.10 on page 59 and 9.2.11 on page 60.
If the SW input is not used, it should be connected to VDD.
6.14 Programmable DMOS slew rate, deadtime and blanking time
Using the POW_SR parameter in the CONFIG register, it is possible to set the commutation
speed of the power bridge output (see Table 28 on page 51).
Figure 12. External switch connection
fl w
DocID022729 Rev 5 31/70
L6472 Functional description
70
6.15 Integrated analog-to-digital converter
The L6472 integrates an NADC bit ramp-compare analog-to-digital converter with a reference
voltage equal to VREG. The analog-to-digital converter input is available through the ADCIN
pin and the conversion result is available in the ADC_OUT register (see Section 9.1.13 on
page 46). The sampling frequency is equal to the clock frequency divided by 512.
The ADC_OUT value can be used for the torque regulation or can remain at the user’s
disposal.
6.16 Internal voltage regulator
The L6472 device integrates a voltage regulator which generates a 3 V voltage starting from
motor power supply (VSA and VSB). In order to make the voltage regulator stable, at least
22 µF should be connected between the VREG pin and ground (the suggested value is 47
µF).
The internal voltage regulator can be used to supply the VDD pin in order to make the
device digital output range 3.3 V compatible (Figure 13). A digital output range 5 V
compatible can be obtained connecting the VDD pin to an external 5 V voltage source. In
both cases, a 10 µF capacitance should be connected to the VDD pin in order to obtain
a correct operation.
The internal voltage regulator is able to supply a current up to IREG,MAX, internal logic
consumption included (Ilogic). When the device is in standby mode the maximum current that
can be supplied is IREG
, STBY
, internal consumption included (Ilogic, STBY).
If an external 3.3 V regulated voltage is available, it can be applied to the VREG pin in order
to supply all the internal logic and avoid power dissipation of the internal 3 V voltage
regulator (Figure 13). The external voltage regulator should never sink current from the
VREG pin.
Figure 13. Internal 3 V linear regulator
73&( 7%% 74" 74#
"(/%%(/%
7%%
P$*$
7T
7
73&( 7%% 74" 74#
"(/%%(/%
*$
7
3&(
7T
7#"5
-PHJHTVQQMJFECZ
*/5&3/"-WPMUBHFSFHVMBUPS
-PHJHTVQQMJFECZ
&95&3/"-WPMUBHFSFHVMBUPS
Functional description L6472
32/70 DocID022729 Rev 5
6.17 BUSY\SYNC pin
This pin is an open drain output which can be used as the busy flag or synchronization
signal according to the SYNC_EN bit value (STEP_MODE register).
6.17.1 BUSY operation mode
The pin works as busy signal when the SYNC_EN bit is set low (default condition). In this
mode the output is forced low while a constant speed, absolute positioning or motion
command is under execution. The BUSY pin is released when the command has been
executed (target speed or target position reached). The STATUS register includes a BUSY
flag that is the BUSY pin mirror (see Section 9.1.19 on page 52).
In the case of daisy chain configuration, BUSY pins of different ICs can be hard-wired to
save host controller GPIOs.
6.17.2 SYNC operation mode
The pin works as a synchronization signal when the SYNC_EN bit is set high. In this mode
a step-clock signal is provided on the output according to a SYNC_SEL and STEP_SEL
parameter combination (see Section 9.1.16 on page 47).
6.18 FLAG pin
By default an internal open drain transistor pulls the FLAG pin to ground when at least one
of the following conditions occur:
Power-up or standby/reset exit
Overcurrent detection
Thermal warning
Thermal shutdown
UVLO
Switch turn-on event
Wrong command
Non-performable command.
It is possible to mask one or more alarm conditions by programming the ALARM_EN
register (see Table 23 on page 49). If the corresponding bit of the ALARM_EN register is
low, the alarm condition is masked and it does not cause a FLAG pin transition; all other
actions imposed by alarm conditions are performed anyway. In the case of daisy chain
configuration, the FLAG pins of different ICs can be OR-wired to save host controller
GPIOs.
om pvedmws 0N mm MA”) 7 xwgnrn H or; or;
DocID022729 Rev 5 33/70
L6472 Phase current control
70
7 Phase current control
The L6472 performs a new current control technique, named predictive current control,
allowing the device to obtain the target average phase current. This method is described in
detail in Section 7.1. Furthermore, the L6472 automatically selects the better decay mode in
order to follow the current profile.
Current control algorithm parameters can be programmed by the T_FAST, TON_MIN,
TOFF_MIN and CONFIG registers (see Section 9.1.11 on page 45, 9.1.12 on page 45,
9.1.13 on page 46 and 9.1.18 on page 49 for details).
Different current amplitude can be set for acceleration, deceleration and constant speed
phases and when the motor is stopped through the TVAL_ACC, TVAL_DEC, TVAL_RUN
and TVAL_HOLD registers (see Section 7.4 on page 37). The output current amplitude can
also be regulated by the ADCIN voltage value (see Section 6.15).
Each bridge is driven by an independent control system that shares the control parameters
only with other bridges.
7.1 Predictive current control
Unlike a classical peak current control system, that causes the phase current decay when
the target value is reached, this new method keeps the power bridge on for an extra time
after reaching the current threshold.
At each cycle the system measures the time required to reach the target current (tSENSE).
After that the power stage is kept in a “predictive” ON state (tPRED) for a time equal to the
mean value of tSENSE in the last two control cycles (actual one and previous one), as shown
in Figure 14.
Figure 14. Predictive current control
Phase current control L6472
34/70 DocID022729 Rev 5
At the end of the predictive ON state the power stage is set in the OFF state for a fixed time,
as in a constant tOFF current control. During the OFF state both slow and fast decay can be
performed; the better decay combination is automatically selected by the L6472, as
described in Section 7.2.
As shown in Figure 14, the system is able to center the triangular wave on the desired
reference value improving dramatically the accuracy of the current control system: in fact
the average value of a triangular wave is exactly equal to the middle point of each of its
segments and at steady-state the predictive current control tends to equalize the duration of
the tSENSE and the tPRED time.
Furthermore, the tOFF value is recalculated each time a new current value is requested
(microstep change) in order to keep the PWM frequency as near as possible to the
programmed one (TSW parameter in the CONFIG register).
The device can be forced to work using a classic peak current control setting the PRED_EN
bit in the CONFIG register low (default condition). In this case, after the sense phase
(tSENSE) the power stage is set in the OFF state, as shown in Figure 15.
Figure 15. Non-predictive current control
7.2 Auto-adjusted decay mode
During the current control, the device automatically selects the better decay mode in order
to follow the current profile reducing the current ripple.
At reset, the OFF time is performed by turning on both the low-side MOSFETs of the power
stage and the current recirculates in the lower half of the bridge (slow decay).
If, during a PWM cycle, the target current threshold is reached in a time shorter than the
TON_MIN value, a fast decay of TOFF_FAST/8 (T_FAST register) is immediately performed
turning on the opposite MOS of both half-bridges and the current recirculates back to the
supply bus.
After this time, the bridge returns to the ON state: if the time needed to reach the target
current value is still less than TON_MIN, a new fast decay is performed with a period twice
the previous one. Otherwise, the normal control sequence is followed as described in
Section 7.1. The maximum fast decay duration is set by the TOFF_FAST value.
1“ fan decay : TOFFiFAST/S i 3" fan decay: : TOFFjAsT/l Ton >T0N7M|N :TOFFjAsT/z 2"‘fandecay( ’: : TOFFiFAST/IO relevance cunem ( ) Time Notastamng from 1"1 fan decaythe system will comblne fastand s‘ow decay duvmg the OFF phase
DocID022729 Rev 5 35/70
L6472 Phase current control
70
Figure 16. Adaptive decay - fast decay tuning
When two or more fast decays are performed with the present target current, the control
system adds a fast decay at the end of every OFF time, keeping the OFF state duration
constant (tOFF is split into tOFF,SLOW and tOFF,FAST). When the current threshold is increased
by a microstep change (rising step), the system returns to normal decay mode (slow decay
only) and the tFAST value is halved.
Stopping the motor or reaching the current sine wave zero crossing causes the current
control system to return to the reset state.
$0
W)$67
W)$67
W)$67
W)$67
2"‘1 fast decay 1“ fan decay swnch \0 fast + s‘ow decay mode velevpnu (wrenl Tum: ‘on ‘ ‘or ‘ ‘ > ‘ ‘ or New ‘0‘ W W Tavgel (want is inaeased (msmg step) synem rewms my slow decay mode and xw vaule .s ha‘ved rah-1M“: (uvvcnl Hm!
Phase current control L6472
36/70 DocID022729 Rev 5
7.3 Auto-adjusted fast decay during the falling steps
When the target current is decreased by a microstep change (falling step), the device
performs a fast decay in order to reach the new value as fast as possible. Anyway,
exceeding the fast duration may cause a strong ripple on the step change. The L6472
device automatically adjusts these fast decays reducing the current ripple.
At reset, the fast decay value (tFALL) is set to FALL_STEP/4 (T_FAST register). The tFALL
value is doubled every time, within the same falling step, an extra fast decay is necessary to
obtain an ON time greater than TON_MIN. The maximum tFALL value is equal to
FALL_STEP.
At the next falling step, the system uses the last tFALL value of the previous falling step.
Stopping the motor or reaching the current sine wave zero crossing causes the current
control system to return to the reset state.
Figure 17. Adaptive decay switch from normal to slow + fast decay mode and vice-versa
Falling step 1“ fan decay: lm : FALLisTEP/A l Falling step 1“ fast deay: x , FALLSTEP/Z mu ’ mkmntu (“Hem 2"d fas: decay; ‘ , FALLiSTEP/Z mi Time
DocID022729 Rev 5 37/70
L6472 Phase current control
70
Figure 18. Fast decay tuning during the falling steps
7.4 Torque regulation (output current amplitude regulation)
The output current amplitude can be regulated in two ways: writing the TVAL_ACC,
TVAL_DEC, TVAL_RUN and TVAL_HOLD registers or varying the ADCIN voltage value.
The EN_TQREG bit (CONFIG register) sets the torque regulation method. If this bit is high,
the ADC_OUT prevalue is used to regulate output current amplitude (see Section 9.1.14 on
page 46). Otherwise the internal analog-to-digital converter is at the user’s disposal and the
output current amplitude is managed by the TVAL_HOLD, TVAL_RUN, TVAL_ACC and
TVAL_DEC registers (see Section 9.1.10 on page 44).
The voltage applied to the ADCIN pin is sampled at fS frequency and converted in an NADC
bit digital signal. The analog-to-digital conversion result is available in the ADC_OUT
register.
cs I My . . CK . m (Mr .—>u—» . [I]: I um ’ . W I I I I SDO er X N72 X LSB )_/,I \ M53 I Amozasow
Serial interface L6472
38/70 DocID022729 Rev 5
8 Serial interface
The integrated 8-bit serial peripheral interface (SPI) is used for a synchronous serial
communication between the host microprocessor (always master) and the L6472 (always
slave).
The SPI uses chip select (CS), serial clock (CK), serial data input (SDI) and serial data
output (SDO) pins. When CS is high, the device is unselected and the SDO line is inactive
(high-impedance).
The communication starts when CS is forced low. The CK line is used for synchronization of
data communication.
All commands and data bytes are shifted into the device through the SDI input, most
significant bit first. The SDI is sampled on the rising edges of the CK.
All output data bytes are shifted out of the device through the SDO output, most significant
bit first. The SDO is latched on the falling edges of the CK. When a return value from the
device is not available, an all zero byte is sent.
After each byte transmission, the CS input must be raised and be kept high for at least tdisCS
in order to allow the device to decode the received command and put the return value into
the shift register.
All timing requirements are shown in Figure 19 (see Section 3 on page 11 for the respective
electrical characteristics for values).
Multiple devices can be connected in a daisy chain configuration, as shown in Figure 20.
Figure 19. SPI timings diagram
DEV 1 (s HOST ‘“ SDOV 5mv 8 CK 5m sno HOST SPI signals 3 \ H J \_ mo-- mm DEV 2 CK 3m SDO DEV N CK Sm SDO AMOZJHM
DocID022729 Rev 5 39/70
L6472 Serial interface
70
Figure 20. Daisy chain configuration
Programming manual L6472
40/70 DocID022729 Rev 5
9 Programming manual
9.1 Register and flag description
Table 9 shows a map of the user registers available (detailed description in respective
paragraphs from Section 9.1.1 on page 41 to Section 9.1.19 on page 52):
Table 9. Register map
Address
[Hex]
Register
name Register function Len.
[bit]
Reset
[Hex] Reset value Remarks(1)
h01 ABS_POS Current position 22 000000 0 R, WS
h02 EL_POS Electrical position 9 000 0 R, WS
h03 MARK Mark position 22 000000 0 R, WR
h04 SPEED Current speed 20 00000 0 step/tick (0 step/s) R
h05 ACC Acceleration 12 08A 125.5e-12 step/tick2
(2008 step/s2) R, WS
h06 DEC Deceleration 12 08A 125.5e-12 step/tick2
(2008 step/s2) R, WS
h07 MAX_SPEED Maximum speed 10 041 248e-6 step/tick (991.8 step/s) R, WR
h08 MIN_SPEED Minimum speed 13 000 0 step/tick (0 step/s) R, WS
h15 FS_SPD Full-step speed 10 027 150.7e-6 step/tick
(602.7 step/s) R, WR
h09 TVAL_HOLD Holding current 7 29 1.3125 A R, WR
h0A TVAL_RUN
Constant speed
current 7 29 1.3125 A R, WR
h0B TVAL_ACC Acceleration
starting current 7 29 1.3125 A R, WR
h0C TVAL_DEC Deceleration
starting current 7 29 1.3125 A R, WR
h0D RESERVED Reserved address 16
h0E T_FAST
Fast decay/fall step
time 8 19 1µs / 5 µs R, WH
h0F TON_MIN Minimum ON time 7 29 20.5 µs R, WH
h10 TOFF_MIN Minimum OFF time 7 29 20.5 µs R, WH
h11 RESERVED Reserved address 8
h12 ADC_OUT ADC output 5 XX(2) R
h13 OCD_TH OCD threshold 4 8 3.38 A R, WR
h14 RESERVED Reserved address 8
h16 STEP_MODE Step mode 8 7(3) 16 microsteps, no synch. R, WH
h17 ALARM_EN Alarms enable 8 FF All alarms enabled R, WS
DocID022729 Rev 5 41/70
L6472 Programming manual
70
9.1.1 ABS_POS
The ABS_POS register contains the current motor absolute position in agreement to the
selected step mode; the stored value unit is equal to the selected step mode (full, half,
quarter, etc.). The value is in 2's complement format and it ranges from -221 to +221-1.
At power-on the register is initialized to “0” (HOME position).
Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see Section 9.1.19 on page 52).
9.1.2 EL_POS
The EL_POS register contains the current electrical position of the motor. The two MSbits
indicate the current step and the other bits indicate the current microstep (expressed in
step/128) within the step.
When the EL_POS register is written by the user the new electrical position is instantly
imposed. When the EL_POS register is written its value must be masked in order to match
with the step mode selected in the STEP_MODE register in order to avoid a wrong
microstep value generation (see Section 9.1.16 on page 47); otherwise the resulting
microstep sequence is incorrect.
Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see Section 9.1.19 on page 52).
h18 CONFIG IC configuration 16 2E88
Internal oscillator, 2 MHz OSCOUT
clock, supply voltage compensation
disabled, overcurrent shutdown
enabled,
slew rate = 290 V/µs TSW = 40 µs
R, WH
h19 STATUS Status 16 XXXX(2) High-impedance state, UVLO/reset
flag set. R
h1A RESERVED Reserved address
h1B RESERVED Reserved address
1. R: Readable, WH: writable only when outputs are in high-impedance, WS: writable only when motor is stopped, WR: always
writable.
2. According to startup conditions.
3. The bit 3 of the register must be set to one.
Table 9. Register map (continued)
Address
[Hex]
Register
name Register function Len.
[bit]
Reset
[Hex] Reset value Remarks(1)
Table 10. EL_POS register
Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
STEP MICROSTEP
Programming manual L6472
42/70 DocID022729 Rev 5
9.1.3 MARK
The MARK register contains an absolute position called MARK, in accordance with the
selected step mode; the stored value unit is equal to the selected step mode (full, half,
quarter, etc.).
It is in 2's complement format and it ranges from -221 to +221-1.
9.1.4 SPEED
The SPEED register contains the current motor speed, expressed in step/tick (format
unsigned fixed point 0.28).
In order to convert the SPEED value in step/s the following formula can be used:
Equation 1
where SPEED is the integer number stored in the register and tick is 250 ns.
The available range is from 0 to 15625 step/s with a resolution of 0.015 step/s.
Note: The range, effectively available to the user, is limited by the MAX_SPEED parameter.
Any attempt to write the register causes the command to be ignored and the
NOTPERF_CMD flag to rise (see Section 9.1.19 on page 52).
9.1.5 ACC
The ACC register contains the speed profile acceleration expressed in step/tick2 (format
unsigned fixed point 0.40).
In order to convert ACC value in step/s2 the following formula can be used:
Equation 2
where ACC is the integer number stored in the register and tick is 250 ns.
The available range is from 14.55 to 59590 step/s2 with a resolution of 14.55 step/s2.
The 0xFFF value of the register is reserved and it should never be used.
Any attempt to write to the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see Section 9.1.19).
9.1.6 DEC
The DEC register contains the speed profile deceleration expressed in step/tick2 (format
unsigned fixed point 0.40).
step s
SPEED 2 28
tick
-------------------------------------=
step s
ACC 2 40
tick2
-----------------------------=
DocID022729 Rev 5 43/70
L6472 Programming manual
70
In order to convert the DEC value in step/s2 the following formula can be used:
Equation 3
where DEC is the integer number stored in the register and tick is 250 ns.
The available range is from 14.55 to 59590 step/s2 with a resolution of 14.55 step/s2.
Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see Section 9.1.19 on page 52).
9.1.7 MAX_SPEED
The MAX_SPEED register contains the speed profile maximum speed expressed in
step/tick (format unsigned fixed point 0.18).
In order to convert it in step/s the following formula can be used:
Equation 4
where MAX_SPEED is the integer number stored in the register and tick is 250 ns.
The available range is from 15.25 to 15610 step/s with a resolution of 15.25 step/s.
9.1.8 MIN_SPEED
The MIN_SPEED register contains the following parameters:
The MIN_SPEED parameter contains the speed profile minimum speed. Its value is
expressed in step/tick and to convert it in step/s the following formula can be used:
Equation 5
where MIN_SPEED is the integer number stored in the register and tick is the ramp 250 ns.
The available range is from 0 to 976.3 step/s with a resolution of 0.238 step/s.
Any attempt to write the register when the motor is running causes the NOTPERF_CMD flag
to rise.
step s
DEC 2 40
tick2
-----------------------------=
step s
MAXSPEED 2 18
tick
---------------------------------------------------=
Table 11. MIN_SPEED register
Bit12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 MIN_SPEED
step s
MINSPEED 2 24
tick
-------------------------------------------------=
Programming manual L6472
44/70 DocID022729 Rev 5
9.1.9 FS_SPD
The FS_SPD register contains the threshold speed. When the actual speed exceeds this
value the step mode is automatically switched to full-step two-phase on. Its value is
expressed in step/tick (format unsigned fixed point 0.18) and to convert it in step/s the
following formula can be used.
Equation 6
If the FS_SPD value is set to h3FF (max.) the system always works in microstepping mode
(SPEED must go beyond the threshold to switch to full-step mode). Setting FS_SPD to zero
does not have the same effect as setting step mode to full-step two phase on: the zero
FS_SPD value is equivalent to a speed threshold of about 7.63 step/s.
The available range is from 7.63 to 15625 step/s with a resolution of 15.25 step/s.
9.1.10 TVAL_HOLD, TVAL_RUN, TVAL_ACC and TVAL_DEC
The TVAL_HOLD register contains the current value that is assigned to the torque
regulation DAC when the motor is stopped.
The TVAL_RUN register contains the current value that is assigned to the torque regulation
DAC when the motor is running at constant speed.
The TVAL_ACC register contains the current value that is assigned to the torque regulation
DAC during acceleration.
The TVAL_DEC register contains the current value that is assigned to the torque regulation
DAC during deceleration.
The available range is from 31.25 mA to 4 A with a resolution of 31.25 mA, as shown in
Table 12 .
step s
FSSPD 0.5+218
tick
--------------------------------------------------------=
Table 12. Torque regulation by TVAL_HOLD, TVAL_ACC, TVAL_DEC and TVAL_RUN
registers
TVAL_X [6 … 0] Output current amplitude
0 0 0 0 0 0 0 31.25 mA
0 0 0 0 0 0 1 62.5 mA
1 1 1 1 1 1 0 3.969 A
1 1 1 1 1 1 1 4 A
DocID022729 Rev 5 45/70
L6472 Programming manual
70
9.1.11 T_FAST
The T_FAST register contains the maximum fast decay time (TOFF_FAST) and the
maximum fall step time (FALL_STEP) used by the current control system (see Section 7.2
on page 34 and 7.3 on page 36 for details):
The available range for both parameters is from 2 µs to 32 µs.
Any attempt to write to the register when the motor is running causes the command to be
ignored and NOTPERF_CMD to rise (see Section 9.1.19 on page 52).
9.1.12 TON_MIN
The TON_MIN register contains the minimum ON time value used by the current control
system (see Section 7.2 on page 34).
The available range for both parameters is from 0.5 µs to 64 µs.
Any attempt to write to the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD to rise (see Section 9.1.19).
Table 13. T_FAST register
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
TOFF_FAST FAST_STEP
Table 14. Maximum fast decay times
TOFF_FAST [3 … 0] FAST_STEP [3 … 0] Fast decay time
0 0 0 0 2 µs
0 0 0 1 4 µs
1 1 1 0 30 µs
1 1 1 1 32 µs
Table 15. Minimum ON time
TON_MIN [6 … 0] Time
0 0 0 0 0 0 0 0.5 µs
0 0 0 0 0 0 1 1 µs
1 1 1 1 1 1 0 63.5 µs
1 1 1 1 1 1 1 64 µs
Programming manual L6472
46/70 DocID022729 Rev 5
9.1.13 TOFF_MIN
The TOFF_MIN register contains the minimum OFF time value used by the current control
system (see Section 7.1 on page 33 for details).
The available range for both parameters is from 0.5 µs to 64 µs.
Any attempt to write to the register when the motor is running causes the command to be
ignored and NOTPERF_CMD to rise (see Section 9.1.19 on page 52).
9.1.14 ADC_OUT
The ADC_OUT register contains the result of the analog-to-digital conversion of the ADCIN
pin voltage.
Any attempt to write to the register causes the command to be ignored and the
NOTPERF_CMD flag to rise (see Section 9.1.19).
Table 16. Minimum OFF time
TOFF_MIN [6 … 0] Time
0 0 0 0 0 0 0 0.5 µs
0 0 0 0 0 0 1 1 µs
1 1 1 1 1 1 0 63.5 µs
1 1 1 1 1 1 1 64 µs
Table 17. ADC_OUT value and torque regulation feature
VADCIN/ VREG ADC_OUT [4.0] Output current amplitude
0 0 0 0 0 0 125 mA
1/32 0 0 0 0 1 250 mA
30/32 1 1 1 1 0 3.875 A
31/32 1 1 1 1 1 4 A
DocID022729 Rev 5 47/70
L6472 Programming manual
70
9.1.15 OCD_TH
The OCD_TH register contains the overcurrent threshold value (see Section 6.9 on page 28
for details). The available range is from 375 mA to 6 A, steps of 375 mA, as shown in
Table 18 .
9.1.16 STEP_MODE
The STEP_MODE register has the following structure:
The STEP_SEL parameter selects one of five possible stepping modes:
Every time the step mode is changed, the electrical position (i.e. the point of microstepping
sine wave that is generated) is reset to the first microstep.
Warning: Every time STEP_SEL is changed the value in the ABS_POS
register looses meaning and should be reset.
Table 18. Overcurrent detection threshold
OCD_TH [3 … 0] Overcurrent detection threshold
0 0 0 0 375 mA
0 0 0 1 750 mA
1 1 1 0 5.625 A
1 1 1 1 6 A
Table 19. STEP_MODE register
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
SYNC_EN SYNC_SEL 1(1)
1. When the register is written this bit should be set to 1.
When the STEP_MODE register is written, the bit #3 is to be set to 1, otherwise anomalous
behaviors could occur.
STEP_SEL
Table 20. Step mode selection
STEP_SEL[2 … 0] Step mode
0 0 0 Full-step
0 0 1 Half-step
0 1 0 1/4 microstep
0 1 1 1/8 microstep
1 X X 1/16 microstep
Programming manual L6472
48/70 DocID022729 Rev 5
Any attempt to write the register when the motor is running causes the command to be
ignored and the NOTPERF_CMD flag to rise (see Section 9.1.19).
When when SYNC_EN bit is set low, BUSY/SYNC output is forced low during the
commands execution, otherwise, when the SYNC_EN bit is set high, the BUSY/SYNC
output provides a clock signal according to the SYNC_SEL parameter.
The synchronization signal is obtained starting from the electrical position information
(EL_POS register) according to Table 22:
Table 21. SYNC output frequency
STEP_SEL (fFS is the full-step frequency)
000 001 010 011 100 101 110 111
SYNC_SEL
000 fFS/2 fFS/2 fFS/2 fFS/2 fFS/2 fFS/2 fFS/2 fFS/2
001 NA fFS f
FS f
FS f
FS f
FS f
FS f
FS
010 NA NA 2 · fFS 2 · fFS 2 · fFS 2 · fFS 2 · fFS 2 · fFS
011 NA NA NA 4 · fFS 4 · fFS 4 · fFS 4 · fFS 4 · fFS
100 NA NA NA NA 8 · fFS 8 · fFS 8 · fFS 8 · fFS
101 NA NA NA NA NA NA NA NA
110 NA NA NA NA NA NA NA NA
111 NA NA NA NA NA NA NA NA
Table 22. SYNC signal source
SYNC_SEL[2 … 0] Source
0 0 0 EL_POS[7]
0 0 1 EL_POS[6]
0 1 0 EL_POS[5]
0 1 1 EL_POS[4]
1 0 0 EL_POS[3]
1 0 1 UNUSED
(1)
1. When this value is selected the BUSY output is forced low.
1 1 0 UNUSED
(1)
1 1 1 UNUSED
(1)
DocID022729 Rev 5 49/70
L6472 Programming manual
70
9.1.17 ALARM_EN
The ALARM_EN register allows the selection of which alarm signals are used to generate
the FLAG output. If the respective bit of the ALARM_EN register is set high, the alarm
condition forces the FLAG pin output down.
9.1.18 CONFIG
The CONFIG register has the following structure:
Table 23. ALARM_EN register
ALARM_EN bit Alarm condition
0 (LSB) Overcurrent
1 Thermal shutdown
2 Thermal warning
3 Undervoltage
4 UNUSED
5 UNUSED
6 Switch turn-on event
7 (MSB) Wrong or non-performable command
Table 24. CONFIG register
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
PRED_EN TSW POW_SR
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
OC_SD RESERVED EN_TQREG SW_MODE EXT_CLK OSC_SEL
Programming manual L6472
50/70 DocID022729 Rev 5
The OSC_SEL and EXT_CLK bits set the system clock source:
The SW_MODE bit sets the external switch to act as HardStop interrupt or not:
The OC_SD bit sets if an overcurrent event causes or not the bridges to turn off; the OCD
flag in the STATUS register is forced low anyway:
Table 25. Oscillator management
EXT_CLK OSC_SEL[2 … 0] Clock source OSCIN OSCOUT
0 0 0 0
Internal oscillator: 16 MHz Unused Unused
0 0 0 1
0 0 1 0
0 0 1 1
1 0 0 0 Internal oscillator: 16 MHz Unused Supplies a 2-MHz clock
1 0 0 1 Internal oscillator: 16 MHz Unused Supplies a 4-MHz clock
1 0 1 0 Unused Supplies an 8-MHz clock
1 0 1 1 Unused Supplies a 16-MHz clock
0 1 0 0
External crystal or resonator:
8 MHz
Crystal/resonator
driving Crystal/resonator driving
0 1 0 1
External crystal or resonator:
16 MHz
Crystal/resonator
driving Crystal/resonator driving
0 1 1 0
External crystal or resonator:
24 MHz
Crystal/resonator
driving Crystal/resonator driving
0 1 1 1
External crystal or resonator:
32 MHz
Crystal/resonator
driving Crystal/resonator driving
1 1 0 0
Ext clock source: 8 MHz
(Crystal/resonator driver
disabled)
Clock source Supplies inverted OSCIN
signal
1 1 0 1
Ext clock source: 16 MHz
(Crystal/resonator driver
disabled)
Clock source Supplies inverted OSCIN
signal
1 1 1 0
Ext clock source: 24 MHz
(Crystal/resonator driver
disabled)
Clock source Supplies inverted OSCIN
signal
1 1 1 1
Ext clock source: 32 MHz
(Crystal/resonator driver
disabled)
Clock source Supplies inverted OSCIN
signal
Table 26. External switch hard stop interrupt mode
SW_MODE Switch mode
0 HardStop interrupt
1 User disposal
DocID022729 Rev 5 51/70
L6472 Programming manual
70
The POW_SR bits set the slew rate value of the power bridge output:
The TQREG bit sets if the torque regulation (see Section 7.4 on page 37) is performed
through ADCIN voltage (external) or the TVAL_HOLD, TVAL_ACC, TVAL_DEC and
TVAL_RUN registers (internal):
The TSW parameter is used by the current control system and it sets the target switching
period.
Any attempt to write the CONFIG register when the motor is running causes the command
to be ignored and the NOTPERF_CMD flag to rise (see Section 9.1.19).
Table 27. Overcurrent event
OC_SD Overcurrent event
1 Bridges shut down
0 Bridges do not shut down
Table 28. Programmable power bridge output slew rate values
POW_SR [1 … 0] Output slew rate (1) [V/s](1)
1. See SRout_r and SRout_f parameters in Table 5 on page 11 for details.
0 0 320
0 1 75
1 0 110
1 1 270
Table 29. External torque regulation enable
TQREG External torque regulation enable
0 Internal registers
1 ADC input
Table 30. Switching period
TSW [4 … 0] Switching period
0 0 0 0 0 4 µs (250 kHz)
0 0 0 0 1 4 µs (250 kHz)
0 0 0 1 0 8 µs (125 kHz)
1 1 1 1 1 124 µs (8 kHz)
Programming manual L6472
52/70 DocID022729 Rev 5
9.1.19 STATUS
When the HiZ flag is high it indicates that the bridges are in high-impedance state. Any
motion command causes the device to exit from High Z state (HardStop and SoftStop
included), unless error flags forcing a High Z state are active.
The UVLO flag is active low and is set by an undervoltage lockout or reset event (power-up
included). The TH_WRN, TH_SD, OCD flags are active low and indicate respectively
thermal warning, thermal shutdown and overcurrent detection events.
The NOTPERF_CMD and WRONG_CMD flags are active high and indicate, respectively,
that the command received by SPI can't be performed or does not exist at all. The SW_F
reports the SW input status (low for open and high for closed).
The SW_EVN flag is active high and indicates a switch turn-on event (SW input falling
edge).
The UVLO, TH_WRN, TH_SD, OCD, NOTPERF_CMD, WRONG_CMD and SW_EVN flags
are latched: when the respective conditions make them active (low or high) they remain in
that state until a GetStatus command is sent to the IC.
The BUSY bit reflects the BUSY pin status. The BUSY flag is low when a constant speed,
positioning or motion command is under execution and is released (high) after the
command has been completed.
The SCK_MOD bit is an active high flag indicating that the device is working in step-clock
mode. In this case the step-clock signal should be provided through the STCK input pin. The
DIR bit indicates the current motor direction:
Table 31. STATUS register
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
SCK_MOD X X OCD TH_SD TH_WRN UVLO WRONG_CMD
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
NOTPERF_CMD MOT_STATUS DIR SW_EVN SW_F BUSY HiZ
Table 32. STATUS register DIR bit
DIR Motor direction
1 Forward
0 Reverse
DocID022729 Rev 5 53/70
L6472 Programming manual
70
MOT_STATUS indicates the current motor status:
Any attempt to write to the register causes the command to be ignored and the
NOTPERF_CMD to rise.
Table 33. STATUS register MOT_STATUS bits
MOT_STATUS Motor status
0 0 Stopped
0 1 Acceleration
1 0 Deceleration
1 1 Constant speed
Programming manual L6472
54/70 DocID022729 Rev 5
9.2 Application commands
A summary of commands is given in Table 34.
Table 34. Application commands
Command mnemonic Command binary code Action
[7 … 5] [4] [3] [2 …1] [0]
NOP 000 0 0 00 0 Nothing
SetParam (PARAM, VALUE) 000 [PARAM] Writes VALUE in the PARAM register
GetParam (PARAM) 001 [PARAM] Returns the stored value in the PARAM register
Run (DIR, SPD) 010 1 0 00 DIR Sets the target speed and the motor direction
StepClock (DIR) 010 1 1 00 DIR Puts the device into step-clock mode and
imposes DIR direction
Move (DIR,N_STEP) 010 0 0 00 DIR Makes N_STEP (micro) steps in DIR direction
(non-performable when motor is running)
GoTo (ABS_POS) 011 0 0 00 0 Brings motor in ABS_POS position (minimum
path)
GoTo_DIR (DIR,ABS_POS) 011 0 1 00 DIR Brings motor in ABS_POS position forcing DIR
direction
GoUntil (ACT,DIR,SPD) 100 0 ACT 01 DIR
Performs a motion in DIR direction with speed
SPD until SW is closed, the ACT action is
executed then a SoftStop takes place
ReleaseSW (ACT, DIR) 100 1 ACT 01 DIR
Performs a motion in DIR direction at minimum
speed until the SW is released (open), the ACT
action is executed then a HardStop takes place
GoHome 011 1 0 00 0 Brings the motor in HOME position
GoMark 011 1 1 00 0 Brings the motor in MARK position
ResetPos 110 1 1 00 0
Resets the ABS_POS register (set HOME
position)
ResetDevice 110 0 0 00 0 Device is reset to power-up conditions
SoftStop 101 1 0 00 0 Stops motor with a deceleration phase
HardStop 101 1 1 00 0 Stops motor immediately
SoftHiZ 101 0 0 00 0
Puts the bridges in high-impedance status after
a deceleration phase
HardHiZ 101 0 1 00 0
Puts the bridges in high-impedance status
immediately
GetStatus 110 1 0 00 0 Returns the STATUS register value
RESERVED 111 0 1 01 1 RESERVED COMMAND
RESERVED 111 1 1 00 0 RESERVED COMMAND
Avgumem by‘e 2 Avgumem bwe o (Wig; W “WWW X mm X “'9“'“e"”’"e‘ X (L591 W SDO 0ch X 0x00 X 0x00 X mac )— (lanes!) SD ‘ NOP X NOP X NOP W ("cm hes‘) ((0 has!) “Mia: IMO “OW Cnmmand ‘ mspansn R “0‘66
DocID022729 Rev 5 55/70
L6472 Programming manual
70
9.2.1 Command management
The host microcontroller can control motor motion and configure the L6472 device through
a complete set of commands.
All commands are composed by a single byte. After the command byte, some argument
bytes should be needed (see Figure 21). Argument length can vary from 1 to 3 bytes.
Figure 21. Command with 3-byte argument
By default the device returns an all zero response for any received byte, the only exceptions
are GetParam and GetStatus commands. When one of these commands is received the
following response bytes represent the related register value (see Figure 22).
Response length can vary from 1 to 3 bytes.
Figure 22. Command with 3-byte response
During response transmission, new commands can be sent. If a command requiring
a response is sent before the previous response is completed, the response transmission is
aborted and the new response is loaded into the output communication buffer (see
Figure 23).
Figure 23. Command response aborted
When a byte that does not correspond to a command is sent to the IC, it is ignored and the
WRONG_CMD flag in the STATUS register is raised (see Section 9.1.19).
Programming manual L6472
56/70 DocID022729 Rev 5
9.2.2 NOP
Nothing is performed.
9.2.3 SetParam (PARAM, VALUE)
The SetParam command sets the PARAM register value equal to VALUE; PARAM is the
respective register address listed in Table 9 on page 40.
The command should be followed by the new register VALUE (most significant byte first).
The number of bytes composing the VALUE argument depends on the length of the target
register (see Table 9).
Some registers cannot be written (see Table 9); any attempt to write one of these registers
causes the command to be ignored and the WRONG_CMD flag to rise at the end of the
command byte as if an unknown command code was sent (see Section 9.1.18 on page 49).
Some registers can only be written in particular conditions (see Table 9 ); any attempt to
write one of these registers when the conditions are not satisfied causes the command to be
ignored and the NOTPERF_CMD flag to rise at the end of last argument byte (see
Section 9.1.19 on page 52).
Any attempt to set an inexistent register (wrong address value) causes the command to be
ignored and the WRONG_CMD flag to rise at the end of the command byte as if an
unknown command code was sent.
9.2.4 GetParam (PARAM)
Table 35. NOP command structure
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 0 0 0 0 From host
Table 36. SetParam command structure
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 PARAM From host
VALUE Byte 2 (if needed)
VALUE Byte 1 (if needed)
VALUE Byte 0
Table 37. GetParam command structure
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 1 PARAM From host
ANS Byte 2 (if needed) To host
ANS Byte 1 (if needed) To host
ANS Byte 0 To host
DocID022729 Rev 5 57/70
L6472 Programming manual
70
This command reads the current PARAM register value; PARAM is the respective register
address listed in Table 9 on page 40.
The command response is the current value of the register (most significant byte first). The
number of bytes composing the command response depends on the length of the target
register (see Table 9).
The returned value is the register one at the moment of GetParam command decoding. If
the register value changes after this moment, the response is not accordingly updated.
All registers can be read anytime.
Any attempt to read an inexistent register (wrong address value) causes the command to be
ignored and WRONG_CMD flag to rise at the end of command byte as if an unknown
command code is sent.
9.2.5 Run (DIR, SPD)
The Run command produces a motion at SPD speed; the direction is selected by the DIR
bit: '1' forward or '0' reverse. The SPD value is expressed in step/tick (format unsigned fixed
point 0.28) which is the same format as the SPEED register (see Section 9.1.4 on page 42).
Note: The SPD value should be lower than MAX_SPEED and greater than MIN_SPEED
otherwise the Run command is executed at MAX_SPEED or MIN_SPEED respectively.
This command keeps the BUSY flag low until the target speed is reached.
This command can be given anytime and is immediately executed.
9.2.6 StepClock (DIR)
The StepClock command switches the device in step-clock mode (see Section 6.7.5 on
page 26) and imposes the forward (DIR = '1') or reverse (DIR = '0') direction.
When the device is in step-clock mode the SCK_MOD flag in the STATUS register is raised
and the motor is always considered stopped (see Section 6.7.5 and Section 9.1.18 on page
49).
The device exits from step-clock mode when a constant speed, absolute positioning or
motion command is sent through SPI. Motion direction is imposed by the respective
Table 38. Run command structure
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 1 0 1 0 0 0 DIR From host
X X X X SPD (Byte 2) From host
SPD (Byte 1) From host
SPD (Byte 0) From host
Table 39. StepClock command structure
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 1 0 1 1 0 0 DIR From host
Programming manual L6472
58/70 DocID022729 Rev 5
StepClock command argument and can by changed by a new StepClock command without
exiting step-clock mode.
Events that cause bridges to be forced into high-impedance state (overtemperature,
overcurrent, etc.) do not cause the device to leave step-clock mode. StepClock command
does not force the BUSY flag low. This command can only be given when the motor is
stopped. If a motion is in progress the motor should be stopped and it is then possible to
send a StepClock command.
Any attempt to perform a StepClock command when the motor is running causes the
command to be ignored and the NOTPERF_CMD flag to rise (see Section 9.1.19 on page
52).
9.2.7 Move (DIR, N_STEP)
The move command produces a motion of N_STEP microsteps; the direction is selected by
the DIR bit ('1' forward or '0' reverse).
The N_STEP value is always in agreement with the selected step mode; the parameter
value unit is equal to the selected step mode (full, half, quarter, etc.).
This command keeps the BUSY flag low until the target number of steps is performed. This
command can only be performed when the motor is stopped. If a motion is in progress the
motor must be stopped and it is then possible to perform a Move command.
Any attempt to perform a Move command when the motor is running causes the command
to be ignored and the NOTPERF_CMD flag to rise (see Section 9.1.19).
9.2.8 GoTo (ABS_POS)
The GoTo command produces a motion to the ABS_POS absolute position through the
shortest path. The ABS_POS value is always in agreement with the selected step mode; the
parameter value unit is equal to the selected step mode (full, half, quarter, etc.).
The GoTo command keeps the BUSY flag low until the target position is reached.
Table 40. Move command structure
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 1 0 0 0 0 0 DIR From host
X X N_STEP (Byte 2) From host
N_STEP (Byte 1) From host
N_STEP (Byte 0) From host
Table 41. GoTo command structure
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 1 1 0 0 0 0 0 From host
X X ABS_POS (Byte 2) From host
ABS_POS (Byte 1) From host
ABS_POS (Byte 0) From host
DocID022729 Rev 5 59/70
L6472 Programming manual
70
This command can only be given when the previous motion command has been completed
(BUSY flag released).
Any attempt to perform a GoTo command when a previous command is under execution
(BUSY low) causes the command to be ignored and the NOTPERF_CMD flag to rise
(see Section 9.1.19 on page 52).
9.2.9 GoTo_DIR (DIR, ABS_POS)
The GoTo_DIR command produces a motion to the ABS_POS absolute position imposing
a forward (DIR = '1') or a reverse (DIR = '0') rotation. The ABS_POS value is always in
agreement with the selected step mode; the parameter value unit is equal to the selected
step mode (full, half, quarter, etc.).
The GoTo_DIR command keeps the BUSY flag low until the target speed is reached. This
command can only be given when the previous motion command has been completed
(BUSY flag released).
Any attempt to perform a GoTo_DIR command when a previous command is under
execution (BUSY low) causes the command to be ignored and the NOTPERF_CMD flag to
rise (see Section 9.1.19).
9.2.10 GoUntil (ACT, DIR, SPD)
The GoUntil command produces a motion at SPD speed imposing a forward (DIR = '1') or
a reverse (DIR = '0') direction. When an external switch turn-on event occurs (see
Section 6.13 on page 30), the ABS_POS register is reset (if ACT = '0') or the ABS_POS
register value is copied into the MARK register (if ACT = '1'); the system then performs a
SoftStop command.
The SPD value is expressed in step/tick (format unsigned fixed point 0.28) which is the
same format as the SPEED register (see Section 9.1.4 on page 42).
The SPD value should be lower than MAX_SPEED and greater than MIN_SPEED,
otherwise the target speed is imposed at MAX_SPEED or MIN_SPEED respectively.
Table 42. GoTo_DIR command structure
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 1 1 0 1 0 0 DIR From host
X X ABS_POS (Byte 2) From host
ABS_POS (Byte 1) From host
ABS_POS (Byte 0) From host
Table 43. GoUntil command structure
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 0 0 0 ACT 0 1 DIR From host
X X X X SPD (Byte 2) From host
SPD (Byte 1) From host
SPD (Byte 0) From host
Programming manual L6472
60/70 DocID022729 Rev 5
If the SW_MODE bit of the CONFIG register is set low, the external switch turn-on event
causes a HardStop interrupt instead of the SoftStop one (see Section 6.13 on page 30 and
9.1.18 on page 49).
This command keeps the BUSY flag low until the switch turn-on event occurs and the motor
is stopped. This command can be given anytime and is immediately executed.
9.2.11 ReleaseSW (ACT, DIR)
The ReleaseSW command produces a motion at minimum speed imposing a forward
(DIR = '1') or reverse (DIR = '0') rotation. When SW is released (opened) the ABS_POS
register is reset (ACT = '0') or the ABS_POS register value is copied into the MARK register
(ACT = '1'); the system then performs a HardStop command.
Note that resetting the ABS_POS register is equivalent to setting the HOME position.
If the minimum speed value is less than 5 step/s or low speed optimization is enabled, the
motion is performed at 5 step/s.
The ReleaseSW command keeps the BUSY flag low until the switch input is released and
the motor is stopped.
9.2.12 GoHome
The GoHome command produces a motion to the HOME position (zero position) via the
shortest path.
Note that this command is equivalent to the “GoTo(0…0)” command. If a motor direction is
mandatory the GoTo_DIR command must be used (see Section 9.2.9).
The GoHome command keeps the BUSY flag low until the home position is reached. This
command can only be given when the previous motion command has been completed. Any
attempt to perform a GoHome command when a previous command is under execution
(BUSY low) causes the command to be ignored and the NOTPERF_CMD to rise (see
Section 9.1.19 on page 52).
Table 44. ReleaseSW command structure
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 0 0 1 ACT 0 1 DIR From host
Table 45. GoHome command structure
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 1 1 1 0 0 0 0 From host
DocID022729 Rev 5 61/70
L6472 Programming manual
70
9.2.13 GoMark
The GoMark command produces a motion to the MARK position performing the minimum
path.
Note that this command is equivalent to the “GoTo (MARK)” command. If a motor direction
is mandatory the GoTo_DIR command must be used.
The GoMark command keeps the BUSY flag low until the MARK position is reached. This
command can only be given when the previous motion command has been completed
(BUSY flag released).
Any attempt to perform a GoMark command when a previous command is under execution
(BUSY low) causes the command to be ignored and the NOTPERF_CMD flag to rise (see
Section 9.1.19 on page 52).
9.2.14 ResetPos
The ResetPos command resets the ABS_POS register to zero. The zero position is also
defined as HOME position (see Section 6.5 on page 23).
9.2.15 ResetDevice
The ResetDevice command resets the device to power-up conditions (see Section 6.1 on
page 20).
Note: At power-up the power bridges are disabled.
Table 46. GoMark command structure
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 1 1 1 1 0 0 0 From host
Table 47. ResetPos command structure
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 1 0 1 1 0 0 0 From host
Table 48. ResetDevice command structure
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 1 0 0 0 0 0 0 From host
Programming manual L6472
62/70 DocID022729 Rev 5
9.2.16 SoftStop
The SoftStop command causes an immediate deceleration to zero speed and a consequent
motor stop; the deceleration value used is the one stored in the DEC register (see
Section 9.1.6 on page 42).
When the motor is in high-impedance state, a SoftStop command forces the bridges to exit
from high-impedance state; no motion is performed.
This command can be given anytime and is immediately executed. This command keeps
the BUSY flag low until the motor is stopped.
9.2.17 HardStop
The HardStop command causes an immediate motor stop with infinite deceleration.
When the motor is in high-impedance state, a HardStop command forces the bridges to exit
from high-impedance state; no motion is performed.
This command can be given anytime and is immediately executed. This command keeps
the BUSY flag low until the motor is stopped.
9.2.18 SoftHiZ
The SoftHiZ command disables the power bridges (high-impedance state) after
a deceleration to zero; the deceleration value used is the one stored in the DEC register
(see Section 9.1.6). When bridges are disabled the HiZ flag is raised.
When the motor is stopped, a SoftHiZ command forces the bridges to enter high-impedance
state.
This command can be given anytime and is immediately executed. This command keeps
the BUSY flag low until the motor is stopped.
Table 49. SoftStop command structure
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 0 1 1 0 0 0 0 From host
Table 50. HardStop command structure
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 0 1 1 1 0 0 0 From host
Table 51. SoftHiZ command structure
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 0 1 0 0 0 0 0 From host
DocID022729 Rev 5 63/70
L6472 Programming manual
70
9.2.19 HardHiZ
The HardHiZ command immediately disables the power bridges (high-impedance state) and
raises the HiZ flag.
When the motor is stopped, a HardHiZ command forces the bridges to enter high-
impedance state.
This command can be given anytime and is immediately executed.
This command keeps the BUSY flag low until the motor is stopped.
9.2.20 GetStatus
The GetStatus command returns the STATUS register value.
The GetStatus command resets the STATUS register warning flags. The command forces
the system to exit from any error state. The GetStatus command does NOT reset the HiZ
flag.
Table 52. HardHiZ command structure
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 0 1 0 1 0 0 0 From host
Table 53. GetStatus command structure
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 1 0 1 0 0 0 0 From host
STATUS MSByte To host
STATUS LSByte To host
Package information L6472
64/70 DocID022729 Rev 5
10 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
0,25 mm .010 inch GAUGE PLANE PW 1 \DENT‘F‘CAT‘ON AMouszw
DocID022729 Rev 5 65/70
L6472 Package information
70
10.1 HTSSOP28 package information
Figure 24. HTSSOP28 package outline
Package information L6472
66/70 DocID022729 Rev 5
Table 54. HTSSOP28 package mechanical data
Symbol
Dimensions (mm)
Min. Typ. Max.
A 1.2
A1 0.15
A2 0.8 1.0 1.05
b 0.19 0.3
c 0.09 0.2
D(1)
1. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs
do not exceed 0.15 mm per side.
9.6 9.7 9.8
D1 5.5
E 6.2 6.4 6.6
E1(2)
2. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions do not exceed
0.25 mm per side.
4.3 4.4 4.5
E2 2.8
e 0.65
L 0.45 0.6 0.75
L1 1.0
K 0°
aaa 0.1
UUUUUL ”WU'
DocID022729 Rev 5 67/70
L6472 Package information
70
10.2 POWERSO36 package information
Figure 25. POWERSO36 package outline
H
D $
(
D
3620(&
'(7$,/$
'


(
(
K[Û
'(7$,/$
OHDG
VOXJ
D
6
*DJH3ODQH

/
'(7$,/%
'(7$,/%
&23/$1$5,7<
*&
&
6($7,1*3/$1(
H
F
11
0
 $%
E
%
$
+
(
'
%277209,(:

Package information L6472
68/70 DocID022729 Rev 5
Table 55. POWERSO36 package mechanical data
Symbol
Dimensions (mm)
Min. Typ. Max.
A 3.60
a1 0.10 0.30
a2 3.30
a3 0 0.10
b 0.22 0.38
c 0.23 0.32
D(1)
1. Dimension “D/E1” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate
burrs do not exceed 0.15 mm per side.
15.80 16.00
D1 9.40 9.80
E 13.90 14.50
E1(1) 10.90 11.10
E2 2.90
E3 5.8 6.2
e 0.65
e3 11.05
G 0 0.10
H 15.50 15.90
h 1.10
L 0.80 1.10
N 10°
S 0°
DocID022729 Rev 5 69/70
L6472 Revision history
70
11 Revision history
Table 56. Document revision history
Date Revision Changes
24-Jan-2012 1 Initial release.
09-Jan-2013 2
Changed the title.
Changed TOP value in Tab le 2 .
Removed Tj parameter in Table 3.
Added footnote to Table 9.
Changed fast decay time in Table 14.
Changed output slew rate values in Table 28
Updated HTSSOP28 package mechanical data.
16-Dec-2013 3
Updated Section 9.1.11 (updated available range for both
parameters).
Updated Section 10 (updated titles, reversed order of Figure 24 and
Table 54 and Figure 25 and Table 55).
Minor modifications throughout document.
19-May-2014 4
Updated Section 6.4 on page 21 (replaced “the first microstep” by
“zero”).
Removed Section “Infinite acceleration/deceleration mode” from
page 23.
Updated Section 9.1.5 on page 42 (replaced “When the ACC value is
set to 0xFFF the device works in infinite acceleration mode.” by “The
0xFFF value of the register is reserved and it should never be
used.”).
Updated Section 9.1.6 on page 42 (removed “When the device is
working in infinite acceleration mode this value is ignored.”).
Updated title of Table 33 on page 53 (replaced “MOT_STATE” by
“MOT_STATUS”).
Updated Table 55 on page 68 (added note 1 below Table 55).
13-Mar-2015 5
Removed “dSPIN™” from the main title on page 1.
Updated Table 6 on page 17 (added label HTSSOP and POWERSO
column).
Minor modifications throughout document.
L6472
70/70 DocID022729 Rev 5
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved

Products related to this Datasheet

IC MTR DRV BIPLR 3.3V/5V 36PWRSO
IC MTR DRV BIPLR 3.3/5V 28HTSSOP
IC MTR DRV BIPLR 3.3/5V 28HTSSOP
IC MTR DRV BIPLR 3.3/5V 28HTSSOP
IC MTR DRV BIPLR 3.3V/5V 36PWRSO
IC MTR DRV BIPLR 3.3V/5V 36PWRSO
BOARD DEMO L6472 MOTOR DRIVER
BOARD EVAL DSPIN DISCOVERY L6472
BOARD DEMO L6472PD
IC MTR DRV BIPLR 3.3/5V 28HTSSOP
IC MTR DRV BIPLR 3.3V/5V 36PWRSO